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Abstract

Current World Wide Web (WWW or Web) standards provide simple support for applications which allow
remote editing of typed data. In practice, the existing capabilities of the WWW have proven inadequate to
support efficient, scalable remote editing free of overwriting conflicts. This document presents a list of features
in the form of requirements for a Web Distributed Authoring and Versioning protocol which, if implemented,
would improve the efficiency of common remote editing operations, provide a locking mechanism to prevent
overwrite conflicts, improve link management support between non-HTML data types, provide a simple
attribute-value metadata facility, provide for the creation and reading of container data types, and integrate
versioning into the WWW.

#rfc.authors.1
#rfc.authors.1
#rfc.authors.2
#rfc.authors.2
#rfc.authors.3
#rfc.authors.3
#rfc.authors.4
#rfc.authors.4


RFC 2291 Distributed Authoring and Versioning February 1998

1.  Introduction

This document describes functionality which, if incorporated in an extension to the existing HTTP proposed
standard [HTTP], would allow tools for remote loading, editing and saving (publishing) of various media
types on the WWW to interoperate with any compliant Web server. As much as possible, this functionality
is described without suggesting a proposed implementation, since there are many ways to perform the
functionality within the WWW framework. It is also possible that a single mechanism could simultaneously
satisfy several requirements.

This document reflects the consensus of the WWW Distributed Authoring and Versioning working group
(WebDAV) as to the functionality that should be standardized to support distributed authoring and versioning
on the Web. As with any set of requirements, practical considerations may make it impossible to satisfy them
all. It is the intention of the WebDAV working group to come as close as possible to satisfying them in the
specifications that make up the WebDAV protocol.
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2.  Rationale

Current Web standards contain functionality which enables the editing of Web content at a remote location,
without direct access to the storage media via an operating system. This capability is exploited by several
existing HTML distributed authoring tools, and by a growing number of mainstream applications (e.g., word
processors) which allow users to write (publish) their work to an HTTP server. To date, experience from
the HTML authoring tools has shown they are unable to meet their users' needs using the facilities of Web
standards. The consequence of this is either postponed introduction of distributed authoring capability, or the
addition of nonstandard extensions to the HTTP protocol or other Web standards. These extensions, developed
in isolation, are not interoperable.

Other authoring applications have wanted to access document repositories or version control systems
through Web gateways, and have been similarly frustrated. Where this access is available at all, it is through
nonstandard extensions to HTTP or other standards that force clients to use a different interface for each
vendor's service.

This document describes requirements for a set of standard extensions to HTTP that would allow distributed
Web authoring tools to provide the functionality their users need by means of the same standard syntax across
all compliant servers. The broad categories of functionality that need to be standardized are:

Properties

Links

Locking

Reservations

Retrieval of Unprocessed Source

Partial Write

Name Space Manipulation

Collections

Versioning

Variants

Security

Internationalization
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3.  Terminology

Where there is overlap, usage is intended to be consistent with that in the HTTP 1.1 specification [HTTP].

Client

A program which issues HTTP requests and accepts responses.

Collection

A collection is a resource that contains other resources, either directly or by reference.

Distributed Authoring Tool

A program which can retrieve a source entity via HTTP, allow editing of this entity, and then save/publish
this entity to a server using HTTP.

Entity

The information transferred in a request or response.

Hierarchical Collection

A hierarchical organization of resources. A hierarchical collection is a resource that contains other
resources, including collections, either directly or by reference.

Link

A typed connection between two or more resources.

Lock

A mechanism for preventing anyone other than the owner of the lock from accessing a resource.

Member of Version Graph

A resource that is a node in a version graph, and so is derived from the resources that precede it in the
graph, and is the basis of those that succeed it.

Property

Named descriptive information about a resource.

Reservation

A declaration that one intends to edit a resource.

Resource

A network data object or service that can be identified by a URI.

Server

A program which receives and responds to HTTP requests.

User Agent

The client that initiates a request.

Variant

A representation of a resource. A resource may have one or more representations associated with it at any
given time.

Version Graph

A directed acyclic graph with resources as its nodes, where each node is derived from its predecessor(s).

Write Lock

A lock that prevents anyone except its owner from modifying the resource it applies to.
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4.  General Principles

This section describes a set of general principles that the WebDAV extensions should follow. These principles
cut across categories of functionality.

4.1.  User Agent Interoperability

All WebDAV clients should be able to work with any WebDAV-compliant HTTP server. It is acceptable for
some client/server combinations to provide special features that are not universally available, but the protocol
should be sufficient that a basic level of functionality will be universal.

4.2.  Client Simplicity

The WebDAV extensions should be designed to allow client implementations to be simple.

4.3.  Legacy Client Support

It should be possible to implement a WebDAV-compliant server in such a way that it can interoperate with
non-WebDAV clients. Such a server would be able to understand any valid HTTP 1.1 request from an ordinary
Web client without WebDAV extensions, and to provide a valid HTTP 1.1 response that does not require the
client to understand the extensions.

4.4.  Data Format Compatibility

WebDAV-compliant servers should be able to work with existing resources and URIs [URL]. Special
additional information should not become a mandatory part of document formats.

4.5.  Replicated, Distributed Systems

Distribution and replication are at the heart of the Internet. All WebDAV extensions should be designed
to allow for distribution and replication. Version trees should be able to be split across multiple servers.
Collections may have members on different servers. Any resource may be cached or replicated for mobile
computing or other reasons. Consequently, the WebDAV extensions must be able to operate in a distributed,
replicated environment.

4.6.  Parsimony in Client-Server Interactions

The WebDAV extensions should keep to a minimum the number of interactions between the client and the
server needed to perform common functions. For example, publishing a document to the Web will often mean
publishing content together with related properties. A client may often need to find out what version graph
a particular resource belongs to, or to find out which resource in a version graph is the published one. The
extensions should make it possible to do these things efficiently.

4.7.  Changes to HTTP

WebDAV adds a number of new types of objects to the Web: properties, collections, version graphs, etc.
Existing HTTP methods such as DELETE and PUT will have to operate in well-defined ways in this expanded
environment. WebDAV should explicitly address not only new methods, headers, and MIME types, but also
any required changes to the existing HTTP methods and headers.

4.8.  Alternate Transport Mechanisms

It may be desirable to transport WebDAV requests and responses by other mechanisms, particularly EMail, in
addition to HTTP. The WebDAV protocol specification should not preclude a future body from developing an
interoperability specification for disconnected operation via EMail.
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5.  Requirements

In the requirement descriptions below, the requirement will be stated, followed by its rationale.

5.1.  Properties

5.1.1.  Functional Requirements

It must be possible to create, modify, read and delete arbitrary properties on resources of any media type.

5.1.2.  Rationale

Properties describe resources of any media type. They may include bibliographic information such as author,
title, publisher, and subject, constraints on usage, PICS ratings, etc. These properties have many uses,
such as supporting searches on property values, enforcing copyrights, and the creation of catalog entries as
placeholders for objects which are not available in electronic form, or which will be available later.

5.2.  Links

5.2.1.  Functional Requirements

It must be possible to create, modify, read and delete typed links between resources of any media type.

5.2.2.  Rationale

One type of link between resources is the hypertext link, which is browsable using a hypertext style point-
and-click user interface. Links, whether they are browsable hypertext links, or simply a means of capturing
a relationship between resources, have many purposes. Links can support pushbutton printing of a multi-
resource document in a prescribed order, jumping to the access control page for a resource, and quick browsing
of related information, such as a table of contents, an index, a glossary, a bibliographic record, help pages,
etc. While link support is provided by the HTML "LINK" element, this is limited only to HTML resources
[HTML]. Similar support is needed for bitmap image types, and other non-HTML media types.

5.3.  Locking

5.3.1.  General Principles

5.3.1.1.  Independence of locks

It must be possible to lock a resource without performing an additional retrieval of the resource, and without
committing to editing the resource.

5.3.1.2.  Multi-Resource Locking

It must be possible to take out a lock on multiple resources residing on the same server in a single action, and
this locking operation must be atomic across these resources.

5.3.2.  Functional Requirements

5.3.2.1.  Write Locks

It must be possible to restrict modification of a resource to a specific person.

5.3.2.2.  Lock Query

It must be possible to find out whether a given resource has any active locks, and if so, who holds those locks.
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5.3.2.3.  Unlock

It must be possible to remove a lock.

5.3.3.  Rationale

At present, the Web provides limited support for preventing two or more people from overwriting each other's
modifications when they save to a given URI. Furthermore, there is no way to discover whether someone else
is currently making modifications to a resource. This is known as the "lost update problem," or the "overwrite
problem." Since there can be significant cost associated with discovering and repairing lost modifications,
preventing this problem is crucial for supporting distributed authoring. A write lock ensures that only one
person may modify a resource, preventing overwrites. Furthermore, locking support is a key component of
many versioning schemes, a desirable capability for distributed authoring.

An author may wish to lock an entire web of resources even though he is editing just a single resource, to keep
the other resources from changing. In this way, an author can ensure that if a local hypertext web is consistent
in his distributed authoring tool, it will then be consistent when he writes it to the server. Because of this, it
should be possible to take out a lock without also causing transmission of the contents of a resource.

It is often necessary to guarantee that a lock or unlock operation occurs at the same time across multiple
resources, a feature which is supported by the multiple-resource locking requirement. This is useful for
preventing a collision between two people trying to establish locks on the same set of resources, since with
multi- resource locking, one of the two people will get a lock. If this same multiple-resource locking scenario
was repeated by using atomic lock operations iterated across the resources, the result would be a splitting of the
locks between the two people, based on resource ordering and race conditions.

5.4.  Reservations

5.4.1.  Functional Requirements

5.4.1.1.  Reserve

It must be possible for a principal to register with the server an intent to edit a given resource, so that other
principals can discover who intends to edit the resource.

5.4.1.2.  Reservation Query

It must be possible to find out whether a given resource has any active reservations, and if so, who currently
holds reservations.

5.4.1.3.  Release Reservation

It must be possible to release the reservation.

5.4.2.  Rationale

Experience from configuration management systems has shown that people need to know when they are
about to enter a parallel editing situation. Once notified, they either decide not to edit in parallel with the other
authors, or they use out-of-band communication (face- to-face, telephone, etc.) to coordinate their editing to
minimize the difficulty of merging their results. Reservations are separate from locking, since a write lock does
not necessarily imply a resource will be edited, and a reservation does not carry with it any access restrictions.
This capability supports versioning, since a check-out typically involves taking out a write lock, making a
reservation, and getting the resource to be edited.
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5.5.  Retrieval of Unprocessed Source for Editing

5.5.1.  Functional Requirement

The source of any given resource must be retrievable by any principal with authorization to edit the resource.

5.5.2.  Rationale

There are many cases where the source stored on a server does not correspond to the actual entity transmitted in
response to an HTTP GET. Current known cases are server side include directives, and Standard Generalized
Markup Language (SGML) source which is converted on the fly to HyperText Markup Language (HTML)
[HTML] output entities. There are many possible cases, such as automatic conversion of bitmap images into
several variant bitmap media types (e.g. GIF, JPEG), and automatic conversion of an application's native media
type into HTML. As an example of this last case, a word processor could store its native media type on a server
which automatically converts it to HTML. A GET of this resource would retrieve the HTML. Retrieving the
source would retrieve the word processor native format.

5.6.  Partial Write

5.6.1.  Functional Requirement

After editing a resource, it must be possible to write only the changes to the resource, rather than retransmitting
the entire resource.

5.6.2.  Rationale

During distributed editing which occurs over wide geographic separations and/or over low bandwidth
connections, it is extremely inefficient and frustrating to rewrite a large resource after minor changes, such as
a one-character spelling correction. Support is needed for transmitting "insert" (e.g., add this sentence in the
middle of a document) and "delete" (e.g. remove this paragraph from the middle of a document) style updates.
Support for partial resource updates will make small edits more efficient, and allow distributed authoring tools
to scale up for editing large documents.

5.7.  Name Space Manipulation

5.7.1.  Copy

5.7.1.1.  Functional Requirements

It must be possible to duplicate a resource without a client loading, then resaving the resource. After the copy
operation, a modification to either resource must not cause a modification to the other.

5.7.1.2.  Rationale

There are many reasons why a resource might need to be duplicated, such as changing ownership, preparing for
major modifications, or making a backup. Due to network costs associated with loading and saving a resource,
it is far preferable to have a server perform a resource copy than a client.

5.7.2.  Move/Rename

5.7.2.1.  Functional Requirements

It must be possible to change the location of a resource without a client loading, then resaving the resource
under a different name. After the move operation, it must no longer be possible to access the resource at its
original location.
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5.7.2.2.  Rationale

It is often necessary to change the name of a resource, for example due to adoption of a new naming
convention, or if a typing error was made entering the name originally. Due to network costs, it is undesirable
to perform this operation by loading, then resaving the resource, followed by a delete of the old resource.
Similarly, a single rename operation is more efficient than a copy followed by a delete operation. Note that
moving a resource is considered the same function as renaming a resource.

5.8.  Collections

A collection is a resource that is a container for other resources, including other collections. A resource may
belong to a collection either directly or by reference. If a resource belongs to a collection directly, name space
operations like copy, move, and delete applied to the collection also apply to the resource. If a resource belongs
to a collection by reference, name space operations applied to the collection affect only the reference, not the
resource itself.

5.8.1.  Functional Requirements

5.8.1.1.  List Collection

A listing of all resources in a specific collection must be accessible.

5.8.1.2.  Make Collection

It must be possible to create a new collection.

5.8.1.3.  Add to Collection

It must be possible to add a resource to a collection directly or by reference.

5.8.1.4.  Remove from Collection

It must be possible to remove a resource from a collection.

5.8.2.  Rationale

In [URL] it states that, "some URL schemes (such as the ftp, http, and file schemes) contain names that can be
considered hierarchical." Especially for HTTP servers which directly map all or part of their URL name space
into a filesystem, it is very useful to get a listing of all resources located at a particular hierarchy level. This
functionality supports "Save As..." dialog boxes, which provide a listing of the entities at a current hierarchy
level, and allow navigation through the hierarchy. It also supports the creation of graphical visualizations
(typically as a network) of the hypertext structure among the entities at a hierarchy level, or set of levels. It also
supports a tree visualization of the entities and their hierarchy levels.

In addition, document management systems may want to make their documents accessible through the Web.
They typically allow the organization of documents into collections, and so also want their users to be able to
view the collection hierarchy through the Web.

There are many instances where there is not a strong correlation between a URL hierarchy level and the notion
of a collection. One example is a server in which the URL hierarchy level maps to a computational process
which performs some resolution on the name. In this case, the contents of the URL hierarchy level can vary
depending on the input to the computation, and the number of resources accessible via the computation can be
very large. It does not make sense to implement a directory feature for such a name space. However, the utility
of listing the contents of those URL hierarchy levels which do correspond to collections, such as the large
number of HTTP servers which map their name space to a filesystem, argue for the inclusion of this capability,
despite not being meaningful in all cases. If listing the contents of a URL hierarchy level does not makes sense
for a particular URL, then a "405 Method Not Allowed" status code could be issued.
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The ability to create collections to hold related resources supports management of a name space by
packaging its members into small, related clusters. The utility of this capability is demonstrated by the broad
implementation of directories in recent operating systems. The ability to create a collection also supports
the creation of "Save As..." dialog boxes with "New Level/Folder/Directory" capability, common in many
applications.

5.9.  Versioning

5.9.1.  Background and General Principles

5.9.1.1.  Stability of versions

Most versioning systems are intended to provide an accurate record of the history of evolution of a document.
This accuracy is ensured by the fact that a version eventually becomes "frozen" and immutable. Once a version
is frozen, further changes will create new versions rather than modifying the original. In order for caching
and persistent references to be properly maintained, a client must be able to determine that a version has been
frozen. Any successful attempt to retrieve a frozen version of a resource will always retrieve exactly the same
content, or return an error if that version (or the resource itself) is no longer available.

5.9.1.2.  Operations for Creating New Versions

Version management systems vary greatly in the operations they require, the order of the operations, and how
they are combined into atomic functions. In the most complete cases, the logical operations involved are:

• Reserve existing version

• Lock existing version

• Retrieve existing version

• Request or suggest identifier for new version

• Write new version

• Release lock

• Release reservation

With the exception of requesting a new version identifier, all of these operations have applications outside
of versioning and are either already part of HTTP or are discussed in earlier sections of these requirements.
Typically, versioning systems combine reservation, locking, and retrieval -- or some subset of these -- into
an atomic checkout function. They combine writing, releasing the lock, and releasing the reservation -- or
some subset of these -- into an atomic checkin function. The new version identifier may be assigned either at
checkout or at checkin.

The WebDAV extensions must find some balance between allowing versioning servers to adopt whatever
policies they wish with regard to these operations and enforcing enough uniformity to keep client
implementations simple.

5.9.1.3.  The Versioning Model

Each version typically stands in a "derived from" relationship to its predecessor(s). It is possible to derive
several different versions from a single version (branching), and to derive a single version from several
versions (merging). Consequently, the collection of related versions forms a directed acyclic graph. In the
following discussion, this graph will be called a "version graph". Each node of this graph is a "version" or
"member of the version graph". The arcs of the graph capture the "derived from" relationships.

It is also possible for a single resource to participate in multiple version graphs.

The WebDAV extensions should support this versioning model, though particular servers may restrict it in
various ways.

Slein, et al. Informational [Page 10]



RFC 2291 Distributed Authoring and Versioning February 1998

5.9.1.4.  Versioning Policies

Many writers, including Feiler [CM] and Haake and Hicks [VSE], have discussed the notion of versioning
styles (referred to here as versioning policies, to reflect the nature of client/server interaction) as one way to
think about the different policies that versioning systems implement. Versioning policies include decisions on
the shape of version histories (linear or branched), the granularity of change tracking, locking requirements
made by a server, etc. The protocol should clearly identify the policies that it dictates and the policies that are
left up to versioning system implementors or administrators.

5.9.1.5.  

It is possible to version resources of any media type.

5.9.2.  Functional Requirements

5.9.2.1.  Referring to a version graph

There must be a way to refer to a version graph as a whole.

Some queries and operations apply, not to any one member of a version graph, but to the version graph as a
whole. For example, a client may request that an entire graph be moved, or may ask for a version history. In
these cases, a way to refer to the whole version graph is required.

5.9.2.2.  Referring to a specific member of a version graph

There must be a way to refer to each member of a version graph. This means that each member of the graph is
itself a resource.

Each member of a version graph must be a resource if it is to be possible for a hypertext link to refer to specific
version of a page, or for a client to request a specific version of a document for editing.

5.9.2.3.  

A client must be able to determine whether a resource is a version graph, or whether a resource is itself a
member of a version graph.

A resource may be a simple, non-versioned resource, or it may be a version graph, or it may be a member of a
version graph. A client needs to be able to tell which sort of resource it is accessing.

5.9.2.4.  

There must be a way to refer to a server-defined default member of a version graph.

The server should return a default version of a resource for requests that ask for the default version, as well as
for requests where no specific version information is provided. This is one of the simplest ways to guarantee
non-versioning client compatibility. This does not rule out the possibility of a server returning an error when no
sensible default exists.

It may also be desirable to be able to refer to other special members of a version graph. For example, there may
be a current version for editing that is different from the default version. For a graph with several branches, it
may be useful to be able to request the tip version of any branch.

5.9.2.5.  

It must be possible, given a reference to a member of a version graph, to find out which version graph(s) that
resource belongs to.

This makes it possible to understand the versioning context of the resource. It makes it possible to retrieve
a version history for the graphs to which it belongs, and to browse the version graph. It also supports some
comparison operations: It makes it possible to determine whether two references designate members of the
same version graph.
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5.9.2.6.  Navigation of a version graph

Given a reference to a member of a version graph, it must be possible to discover and access the following
related members of the version graph.

• root member of the graph

• predecessor member(s)

• successor member(s)

• default member of the graph

It must be possible in some way for a versioning client to access versions related to a resource currently being
examined.

5.9.2.7.  Version Topology

There must be a way to retrieve the complete version topology for a version graph, including information
about all members of the version graph. The format for this information must be standardized so that the basic
information can be used by all clients. Other specialized formats should be accommodated, for servers and
clients that require information that cannot be included in the standard topology.

5.9.2.8.  

A client must be able to propose a version identifier to be used for a new member of a version graph. The
server may refuse to use the client's suggested version identifier. The server should tell the client what version
identifier it has assigned to the new member of the version graph.

5.9.2.9.  

A version identifier must be unique across a version graph.

5.9.2.10.  

A client must be able to supply version-specific properties to be associated with a new member of a version
graph. (See Section 5.1 "Properties" above.) At a minimum, it must be possible to associate comments with the
new member, explaining what changes were made.

5.9.2.11.  

A client must be able to query the server for information about a version tree, including which versions are
locked, which are reserved for editing, and by whom (Session Tracking).

5.9.3.  Rationale

Versioning in the context of the world-wide web offers a variety of benefits:

It provides infrastructure for efficient and controlled management of large evolving web sites. Modern
configuration management systems are built on some form of repository that can track the revision history
of individual resources, and provide the higher-level tools to manage those saved versions. Basic versioning
capabilities are required to support such systems.

It allows parallel development and update of single resources. Since versioning systems register change by
creating new objects, they enable simultaneous write access by allowing the creation of variant versions. Many
also provide merge support to ease the reverse operation.

It provides a framework for coordinating changes to resources. While specifics vary, most systems provide
some method of controlling or tracking access to enable collaborative resource development.

It allows browsing through past and alternative versions of a resource. Frequently the modification and
authorship history of a resource is critical information in itself.
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It provides stable names that can support externally stored links for annotation and link-server support. Both
annotation and link servers frequently need to store stable references to portions of resources that are not under
their direct control. By providing stable states of resources, version control systems allow not only stable
pointers into those resources, but also well-defined methods to determine the relationships of those states of a
resource.

It allows explicit semantic representation of single resources with multiple states. A versioning system directly
represents the fact that a resource has an explicit history, and a persistent identity across the various states it has
had during the course of that history.

5.10.  Variants

Detailed requirements for variants will be developed in a separate document.

5.10.1.  Functional Requirements

It must be possible to send variants to the server, describing the relationships between the variants and their
parent resource. In addition, it must be possible to write and retrieve variants of property labels, property
descriptions, and property values.

5.10.2.  Rationale

The HTTP working group is addressing problems of content negotiation and retrieval of variants of a resource.
To extend this work to an authoring environment, WEBDAV must standardize mechanisms for authors to use
when submitting variants to a server. Authors need to be able to provide variants in different file or document
formats, for different uses. They need to provide variants optimized for different clients and for different output
devices. They need to be able to provide variants in different languages in the international environment of the
Web. In support of internationalization requirements (See 5.12 below), variants need to be supported not just
for the content of resources, but for any information intended for human use, such as property values, labels,
and descriptions.

5.11.  Security

5.11.1.  Authentication

The WebDAV specification should state how the WebDAV extensions interoperate with existing
authentication schemes, and should make recommendations for using those schemes.

5.11.2.  Access Control

Access control requirements are specified in a separate access control work in progress [AC].

5.11.3.  Interoperability with Security Protocols

The WebDAV specification must provide a minimal list of security protocols which any compliant server /
client must support. These protocols should insure the authenticity of messages and the privacy and integrity of
messages in transit.

5.12.  Internationalization

5.12.1.  Character Sets and Languages

Since Web distributed authoring occurs in a multi-lingual environment, information intended for user
comprehension must conform to the IETF Character Set Policy [CHAR]. This policy addresses character sets
and encodings, and language tagging.
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5.12.2.  Rationale

In the international environment of the Internet, it is important to insure that any information intended for user
comprehension can be displayed in a writing system and language agreeable to both the client and the server.
The information encompassed by this requirement includes not only the content of resources, but also such
things as display names and descriptions of properties, property values, and status messages.
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