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1.  TERMINOLOGY

The terms user agent, client, server, proxy, origin server, and http_URL have the same meaning as in the
HTTP/1.1 specification [RFC2616]. The terms abs_path and absoluteURI have the same meaning as in the URI
Syntax specification [RFC2396].

Host name (HN) means either the host domain name (HDN) or the numeric Internet Protocol (IP) address of a
host. The fully qualified domain name is preferred; use of numeric IP addresses is strongly discouraged.

The terms request-host and request-URI refer to the values the client would send to the server as, respectively,
the host (but not port) and abs_path portions of the absoluteURI (http_URL) of the HTTP request line. Note
that request-host is a HN.

The term effective host name is related to host name. If a host name contains no dots, the effective host name is
that name with the string .local appended to it. Otherwise the effective host name is the same as the host name.
Note that all effective host names contain at least one dot.

The term request-port refers to the port portion of the absoluteURI (http_URL) of the HTTP request line. If the
absoluteURI has no explicit port, the request-port is the HTTP default, 80. The request-port of a cookie is the
request-port of the request in which a Set-Cookie2 response header was returned to the user agent.

Host names can be specified either as an IP address or a HDN string. Sometimes we compare one host name
with another. (Such comparisons SHALL be case-insensitive.) Host A's name domain-matches host B's if

• their host name strings string-compare equal; or

• A is a HDN string and has the form NB, where N is a non-empty name string, B has the form .B', and B' is
a HDN string. (So, x.y.com domain-matches .Y.com but not Y.com.)

Note that domain-match is not a commutative operation: a.b.c.com domain-matches .c.com, but not the reverse.

The reach R of a host name H is defined as follows:

• If

• H is the host domain name of a host; and,

• H has the form A.B; and

• A has no embedded (that is, interior) dots; and

• B has at least one embedded dot, or B is the string "local". then the reach of H is .B.

• Otherwise, the reach of H is H.

For two strings that represent paths, P1 and P2, P1 path-matches P2 if P2 is a prefix of P1 (including the case
where P1 and P2 string- compare equal). Thus, the string /tec/waldo path-matches /tec.

Because it was used in Netscape's original implementation of state management, we will use the term cookie
to refer to the state information that passes between an origin server and user agent, and that gets stored by the
user agent.

1.1.  Requirements

The key words "MAY", "MUST", "MUST NOT", "OPTIONAL", "RECOMMENDED", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT" in this document are to be interpreted as described
in RFC 2119 [RFC2119].
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2.  STATE AND SESSIONS

This document describes a way to create stateful sessions with HTTP requests and responses. Currently, HTTP
servers respond to each client request without relating that request to previous or subsequent requests; the state
management mechanism allows clients and servers that wish to exchange state information to place HTTP
requests and responses within a larger context, which we term a "session". This context might be used to create,
for example, a "shopping cart", in which user selections can be aggregated before purchase, or a magazine
browsing system, in which a user's previous reading affects which offerings are presented.

Neither clients nor servers are required to support cookies. A server MAY refuse to provide content to a client
that does not return the cookies it sends.
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3.  DESCRIPTION

We describe here a way for an origin server to send state information to the user agent, and for the user agent to
return the state information to the origin server. The goal is to have a minimal impact on HTTP and user agents.

3.1.  Syntax: General

The two state management headers, Set-Cookie2 and Cookie, have common syntactic properties involving
attribute-value pairs. The following grammar uses the notation, and tokens DIGIT (decimal digits), token
(informally, a sequence of non-special, non-white space characters), and http_URL from the HTTP/1.1
specification [RFC2616] to describe their syntax.

   av-pairs    =     av-pair *(";" av-pair)
   av-pair     =     attr ["=" value]              ; optional value
   attr        =     token
   value       =     token | quoted-string

Attributes (names) (attr) are case-insensitive. White space is permitted between tokens. Note that while the
above syntax description shows value as optional, most attrs require them.

NOTE: The syntax above allows whitespace between the attribute and the = sign.

3.2.  Origin Server Role

3.2.1.  General

The origin server initiates a session, if it so desires. To do so, it returns an extra response header to the client,
Set-Cookie2. (The details follow later.)

A user agent returns a Cookie request header (see below) to the origin server if it chooses to continue a session.
The origin server MAY ignore it or use it to determine the current state of the session. It MAY send back to the
client a Set-Cookie2 response header with the same or different information, or it MAY send no Set-Cookie2
header at all. The origin server effectively ends a session by sending the client a Set-Cookie2 header with Max-
Age=0.

Servers MAY return Set-Cookie2 response headers with any response. User agents SHOULD send Cookie
request headers, subject to other rules detailed below, with every request.

An origin server MAY include multiple Set-Cookie2 headers in a response. Note that an intervening gateway
could fold multiple such headers into a single header.

3.2.2.  Set-Cookie2 Syntax

The syntax for the Set-Cookie2 response header is
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   set-cookie      =       "Set-Cookie2:" cookies
   cookies         =       1#cookie
   cookie          =       NAME "=" VALUE *(";" set-cookie-av)
   NAME            =       attr
   VALUE           =       value
   set-cookie-av   =       "Comment" "=" value
                   |       "CommentURL" "=" <"> http_URL <">
                   |       "Discard"
                   |       "Domain" "=" value
                   |       "Max-Age" "=" value
                   |       "Path" "=" value
                   |       "Port" [ "=" <"> portlist <"> ]
                   |       "Secure"
                   |       "Version" "=" 1*DIGIT
   portlist        =       1#portnum
   portnum         =       1*DIGIT

Informally, the Set-Cookie2 response header comprises the token Set-Cookie2:, followed by a comma-
separated list of one or more cookies. Each cookie begins with a NAME=VALUE pair, followed by zero or
more semi-colon-separated attribute-value pairs. The syntax for attribute-value pairs was shown earlier. The
specific attributes and the semantics of their values follows. The NAME=VALUE attribute-value pair MUST
come first in each cookie. The others, if present, can occur in any order. If an attribute appears more than once
in a cookie, the client SHALL use only the value associated with the first appearance of the attribute; a client
MUST ignore values after the first.

The NAME of a cookie MAY be the same as one of the attributes in this specification. However, because
the cookie's NAME must come first in a Set-Cookie2 response header, the NAME and its VALUE cannot be
confused with an attribute-value pair.

NAME=VALUEREQUIRED. The name of the state information ("cookie") is NAME, and its value is VALUE. NAMEs that
begin with $ are reserved and MUST NOT be used by applications.

The VALUE is opaque to the user agent and may be anything the origin server chooses to send, possibly in a
server-selected printable ASCII encoding. "Opaque" implies that the content is of interest and relevance only to
the origin server. The content may, in fact, be readable by anyone that examines the Set-Cookie2 header.

Comment=valueOPTIONAL. Because cookies can be used to derive or store private information about a user, the value of the
Comment attribute allows an origin server to document how it intends to use the cookie. The user can inspect
the information to decide whether to initiate or continue a session with this cookie. Characters in value MUST
be in UTF-8 encoding. [RFC2279]

CommentURL="http_URL"OPTIONAL. Because cookies can be used to derive or store private information about a user, the
CommentURL attribute allows an origin server to document how it intends to use the cookie. The user can
inspect the information identified by the URL to decide whether to initiate or continue a session with this
cookie.

DiscardOPTIONAL. The Discard attribute instructs the user agent to discard the cookie unconditionally when the user
agent terminates.

Domain=valueOPTIONAL. The value of the Domain attribute specifies the domain for which the cookie is valid. If an
explicitly specified value does not start with a dot, the user agent supplies a leading dot.

Max-
Age=value
OPTIONAL. The value of the Max-Age attribute is delta-seconds, the lifetime of the cookie in seconds, a
decimal non-negative integer. To handle cached cookies correctly, a client SHOULD calculate the age of
the cookie according to the age calculation rules in the HTTP/1.1 specification [RFC2616]. When the age is
greater than delta-seconds seconds, the client SHOULD discard the cookie. A value of zero means the cookie
SHOULD be discarded immediately.
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Path=valueOPTIONAL. The value of the Path attribute specifies the subset of URLs on the origin server to which this
cookie applies.

Port[="portlist"]OPTIONAL. The Port attribute restricts the port to which a cookie may be returned in a Cookie request header.
Note that the syntax REQUIREs quotes around the OPTIONAL portlist even if there is only one portnum in
portlist.

SecureOPTIONAL. The Secure attribute (with no value) directs the user agent to use only (unspecified) secure means
to contact the origin server whenever it sends back this cookie, to protect the confidentially and authenticity of
the information in the cookie.

The user agent (possibly with user interaction) MAY determine what level of security it considers appropriate
for "secure" cookies. The Secure attribute should be considered security advice from the server to the user
agent, indicating that it is in the session's interest to protect the cookie contents. When it sends a "secure"
cookie back to a server, the user agent SHOULD use no less than the same level of security as was used when it
received the cookie from the server.

Version=valueREQUIRED. The value of the Version attribute, a decimal integer, identifies the version of the state
management specification to which the cookie conforms. For this specification, Version=1 applies.

3.2.3.  Controlling Caching

An origin server must be cognizant of the effect of possible caching of both the returned resource and the Set-
Cookie2 header. Caching "public" documents is desirable. For example, if the origin server wants to use a
public document such as a "front door" page as a sentinel to indicate the beginning of a session for which a Set-
Cookie2 response header must be generated, the page SHOULD be stored in caches "pre-expired" so that the
origin server will see further requests. "Private documents", for example those that contain information strictly
private to a session, SHOULD NOT be cached in shared caches.

If the cookie is intended for use by a single user, the Set-Cookie2 header SHOULD NOT be cached. A Set-
Cookie2 header that is intended to be shared by multiple users MAY be cached.

The origin server SHOULD send the following additional HTTP/1.1 response headers, depending on
circumstances:

• To suppress caching of the Set-Cookie2 header:

    Cache-control: no-cache="set-cookie2"

and one of the following:

• To suppress caching of a private document in shared caches:

    Cache-control: private

• To allow caching of a document and require that it be validated before returning it to the client:

    Cache-Control: must-revalidate, max-age=0

• To allow caching of a document, but to require that proxy caches (not user agent caches) validate it before
returning it to the client:

    Cache-Control: proxy-revalidate, max-age=0

• To allow caching of a document and request that it be validated before returning it to the client (by "pre-
expiring" it):

    Cache-control: max-age=0

Not all caches will revalidate the document in every case.
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HTTP/1.1 servers MUST send Expires: old-date (where old-date is a date long in the past) on responses
containing Set-Cookie2 response headers unless they know for certain (by out of band means) that there are
no HTTP/1.0 proxies in the response chain. HTTP/1.1 servers MAY send other Cache-Control directives that
permit caching by HTTP/1.1 proxies in addition to the Expires: old-date directive; the Cache-Control directive
will override the Expires: old-date for HTTP/1.1 proxies.

3.3.  User Agent Role

3.3.1.  Interpreting Set-Cookie2

The user agent keeps separate track of state information that arrives via Set-Cookie2 response headers from
each origin server (as distinguished by name or IP address and port). The user agent MUST ignore attribute-
value pairs whose attribute it does not recognize. The user agent applies these defaults for optional attributes
that are missing:

Discard The default behavior is dictated by the presence or absence of a Max-Age attribute.

Domain Defaults to the effective request-host. (Note that because there is no dot at the beginning of
effective request-host, the default Domain can only domain-match itself.)

Max-Age The default behavior is to discard the cookie when the user agent exits.

Path Defaults to the path of the request URL that generated the Set-Cookie2 response, up to and
including the right-most /.

Port The default behavior is that a cookie MAY be returned to any request-port.

Secure If absent, the user agent MAY send the cookie over an insecure channel.

3.3.2.  Rejecting Cookies

To prevent possible security or privacy violations, a user agent rejects a cookie according to rules below. The
goal of the rules is to try to limit the set of servers for which a cookie is valid, based on the values of the Path,
Domain, and Port attributes and the request-URI, request-host and request-port.

A user agent rejects (SHALL NOT store its information) if the Version attribute is missing. Moreover, a user
agent rejects (SHALL NOT store its information) if any of the following is true of the attributes explicitly
present in the Set-Cookie2 response header:

• The value for the Path attribute is not a prefix of the request-URI.

• The value for the Domain attribute contains no embedded dots, and the value is not .local.

• The effective host name that derives from the request-host does not domain-match the Domain attribute.

• The request-host is a HDN (not IP address) and has the form HD, where D is the value of the Domain
attribute, and H is a string that contains one or more dots.

• The Port attribute has a "port-list", and the request-port was not in the list.

Examples:

• A Set-Cookie2 from request-host y.x.foo.com for Domain=.foo.com would be rejected, because H is y.x
and contains a dot.

• A Set-Cookie2 from request-host x.foo.com for Domain=.foo.com would be accepted.

• A Set-Cookie2 with Domain=.com or Domain=.com., will always be rejected, because there is no
embedded dot.

• A Set-Cookie2 with Domain=ajax.com will be accepted, and the value for Domain will be taken to
be .ajax.com, because a dot gets prepended to the value.

• A Set-Cookie2 with Port="80,8000" will be accepted if the request was made to port 80 or 8000 and will be
rejected otherwise.

• A Set-Cookie2 from request-host example for Domain=.local will be accepted, because the effective host
name for the request- host is example.local, and example.local domain-matches .local.
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3.3.3.  Cookie Management

If a user agent receives a Set-Cookie2 response header whose NAME is the same as that of a cookie it has
previously stored, the new cookie supersedes the old when: the old and new Domain attribute values compare
equal, using a case-insensitive string-compare; and, the old and new Path attribute values string-compare equal
(case-sensitive). However, if the Set-Cookie2 has a value for Max-Age of zero, the (old and new) cookie is
discarded. Otherwise a cookie persists (resources permitting) until whichever happens first, then gets discarded:
its Max-Age lifetime is exceeded; or, if the Discard attribute is set, the user agent terminates the session.

Because user agents have finite space in which to store cookies, they MAY also discard older cookies to
make space for newer ones, using, for example, a least-recently-used algorithm, along with constraints on the
maximum number of cookies that each origin server may set.

If a Set-Cookie2 response header includes a Comment attribute, the user agent SHOULD store that information
in a human-readable form with the cookie and SHOULD display the comment text as part of a cookie
inspection user interface.

If a Set-Cookie2 response header includes a CommentURL attribute, the user agent SHOULD store that
information in a human-readable form with the cookie, or, preferably, SHOULD allow the user to follow the
http_URL link as part of a cookie inspection user interface.

The cookie inspection user interface may include a facility whereby a user can decide, at the time the user
agent receives the Set-Cookie2 response header, whether or not to accept the cookie. A potentially confusing
situation could arise if the following sequence occurs:

• the user agent receives a cookie that contains a CommentURL attribute;

• the user agent's cookie inspection interface is configured so that it presents a dialog to the user before the
user agent accepts the cookie;

• the dialog allows the user to follow the CommentURL link when the user agent receives the cookie; and,

• when the user follows the CommentURL link, the origin server (or another server, via other links in the
returned content) returns another cookie.

The user agent SHOULD NOT send any cookies in this context. The user agent MAY discard any cookie it
receives in this context that the user has not, through some user agent mechanism, deemed acceptable.

User agents SHOULD allow the user to control cookie destruction, but they MUST NOT extend the cookie's
lifetime beyond that controlled by the Discard and Max-Age attributes. An infrequently-used cookie may
function as a "preferences file" for network applications, and a user may wish to keep it even if it is the least-
recently-used cookie. One possible implementation would be an interface that allows the permanent storage of
a cookie through a checkbox (or, conversely, its immediate destruction).

Privacy considerations dictate that the user have considerable control over cookie management. The PRIVACY
section contains more information.

3.3.4.  Sending Cookies to the Origin Server

When it sends a request to an origin server, the user agent includes a Cookie request header if it has stored
cookies that are applicable to the request, based on

• the request-host and request-port;

• the request-URI;

• the cookie's age.
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The syntax for the header is:

cookie          =  "Cookie:" cookie-version 1*((";" | ",") cookie-value)
cookie-value    =  NAME "=" VALUE [";" path] [";" domain] [";" port]
cookie-version  =  "$Version" "=" value
NAME            =  attr
VALUE           =  value
path            =  "$Path" "=" value
domain          =  "$Domain" "=" value
port            =  "$Port" [ "=" <"> value <"> ]

The value of the cookie-version attribute MUST be the value from the Version attribute of the corresponding
Set-Cookie2 response header. Otherwise the value for cookie-version is 0. The value for the path attribute
MUST be the value from the Path attribute, if one was present, of the corresponding Set-Cookie2 response
header. Otherwise the attribute SHOULD be omitted from the Cookie request header. The value for the domain
attribute MUST be the value from the Domain attribute, if one was present, of the corresponding Set-Cookie2
response header. Otherwise the attribute SHOULD be omitted from the Cookie request header.

The port attribute of the Cookie request header MUST mirror the Port attribute, if one was present, in the
corresponding Set-Cookie2 response header. That is, the port attribute MUST be present if the Port attribute
was present in the Set-Cookie2 header, and it MUST have the same value, if any. Otherwise, if the Port
attribute was absent from the Set-Cookie2 header, the attribute likewise MUST be omitted from the Cookie
request header.

Note that there is neither a Comment nor a CommentURL attribute in the Cookie request header corresponding
to the ones in the Set-Cookie2 response header. The user agent does not return the comment information to the
origin server.

The user agent applies the following rules to choose applicable cookie-values to send in Cookie request headers
from among all the cookies it has received.

Domain Selection The origin server's effective host name MUST domain-match the Domain
attribute of the cookie.

Port Selection There are three possible behaviors, depending on the Port attribute in the Set-
Cookie2 response header:

1. By default (no Port attribute), the cookie MAY be sent to any port.

2. If the attribute is present but has no value (e.g., Port), the cookie MUST
only be sent to the request-port it was received from.

3. If the attribute has a port-list, the cookie MUST only be returned if the
new request-port is one of those listed in port-list.

Path Selection The request-URI MUST path-match the Path attribute of the cookie.

Max-Age Selection Cookies that have expired should have been discarded and thus are not
forwarded to an origin server.

If multiple cookies satisfy the criteria above, they are ordered in the Cookie header such that those with more
specific Path attributes precede those with less specific. Ordering with respect to other attributes (e.g., Domain)
is unspecified.

Note: For backward compatibility, the separator in the Cookie header is semi-colon (;) everywhere. A server
SHOULD also accept comma (,) as the separator between cookie-values for future compatibility.

3.3.5.  Identifying What Version is Understood: Cookie2

The Cookie2 request header facilitates interoperation between clients and servers that understand different
versions of the cookie specification. When the client sends one or more cookies to an origin server, if at least
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one of those cookies contains a $Version attribute whose value is different from the version that the client
understands, then the client MUST also send a Cookie2 request header, the syntax for which is

   cookie2 =       "Cookie2:" cookie-version

Here the value for cookie-version is the highest version of cookie specification (currently 1) that the client
understands. The client needs to send at most one such request header per request.

3.3.6.  Sending Cookies in Unverifiable Transactions

Users MUST have control over sessions in order to ensure privacy. (See PRIVACY section below.) To
simplify implementation and to prevent an additional layer of complexity where adequate safeguards exist,
however, this document distinguishes between transactions that are verifiable and those that are unverifiable.
A transaction is verifiable if the user, or a user-designated agent, has the option to review the request-URI prior
to its use in the transaction. A transaction is unverifiable if the user does not have that option. Unverifiable
transactions typically arise when a user agent automatically requests inlined or embedded entities or when it
resolves redirection (3xx) responses from an origin server. Typically the origin transaction, the transaction that
the user initiates, is verifiable, and that transaction may directly or indirectly induce the user agent to make
unverifiable transactions.

An unverifiable transaction is to a third-party host if its request-host U does not domain-match the reach R of
the request-host O in the origin transaction.

When it makes an unverifiable transaction, a user agent MUST disable all cookie processing (i.e., MUST NOT
send cookies, and MUST NOT accept any received cookies) if the transaction is to a third-party host.

This restriction prevents a malicious service author from using unverifiable transactions to induce a user agent
to start or continue a session with a server in a different domain. The starting or continuation of such sessions
could be contrary to the privacy expectations of the user, and could also be a security problem.

User agents MAY offer configurable options that allow the user agent, or any autonomous programs that the
user agent executes, to ignore the above rule, so long as these override options default to "off".

(N.B. Mechanisms may be proposed that will automate overriding the third-party restrictions under controlled
conditions.)

Many current user agents already provide a review option that would render many links verifiable. For
instance, some user agents display the URL that would be referenced for a particular link when the mouse
pointer is placed over that link. The user can therefore determine whether to visit that site before causing the
browser to do so. (Though not implemented on current user agents, a similar technique could be used for a
button used to submit a form -- the user agent could display the action to be taken if the user were to select that
button.) However, even this would not make all links verifiable; for example, links to automatically loaded
images would not normally be subject to "mouse pointer" verification.

Many user agents also provide the option for a user to view the HTML source of a document, or to save the
source to an external file where it can be viewed by another application. While such an option does provide a
crude review mechanism, some users might not consider it acceptable for this purpose.

3.4.  How an Origin Server Interprets the Cookie Header

A user agent returns much of the information in the Set-Cookie2 header to the origin server when the request-
URI path-matches the Path attribute of the cookie. When it receives a Cookie header, the origin server
SHOULD treat cookies with NAMEs whose prefix is $ specially, as an attribute for the cookie.

3.5.  Caching Proxy Role

One reason for separating state information from both a URL and document content is to facilitate the scaling
that caching permits. To support cookies, a caching proxy MUST obey these rules already in the HTTP
specification:

Kristol & Montulli Standards Track [Page 12]



RFC 2965 HTTP State Management Mechanism October 2000

• Honor requests from the cache, if possible, based on cache validity rules.

• Pass along a Cookie request header in any request that the proxy must make of another server.

• Return the response to the client. Include any Set-Cookie2 response header.

• Cache the received response subject to the control of the usual headers, such as Expires,

   Cache-control: no-cache

and

   Cache-control: private

• Cache the Set-Cookie2 subject to the control of the usual header,

   Cache-control: no-cache="set-cookie2"

(The Set-Cookie2 header should usually not be cached.)

Proxies MUST NOT introduce Set-Cookie2 (Cookie) headers of their own in proxy responses (requests).
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4.  EXAMPLES

4.1.  Example 1

Most detail of request and response headers has been omitted. Assume the user agent has no stored cookies.

1. User Agent -> Server

    POST /acme/login HTTP/1.1
    [form data]

User identifies self via a form.

2. Server -> User Agent

    HTTP/1.1 200 OK
    Set-Cookie2: Customer="WILE_E_COYOTE"; Version="1"; Path="/acme"

Cookie reflects user's identity.

3. User Agent -> Server

    POST /acme/pickitem HTTP/1.1
    Cookie: $Version="1"; Customer="WILE_E_COYOTE"; $Path="/acme"
    [form data]

User selects an item for "shopping basket".

4. Server -> User Agent

    HTTP/1.1 200 OK
    Set-Cookie2: Part_Number="Rocket_Launcher_0001"; Version="1";
            Path="/acme"

Shopping basket contains an item.

5. User Agent -> Server

    POST /acme/shipping HTTP/1.1
    Cookie: $Version="1";
            Customer="WILE_E_COYOTE"; $Path="/acme";
            Part_Number="Rocket_Launcher_0001"; $Path="/acme"
    [form data]

User selects shipping method from form.

6. Server -> User Agent

    HTTP/1.1 200 OK
    Set-Cookie2: Shipping="FedEx"; Version="1"; Path="/acme"

New cookie reflects shipping method.

7. User Agent -> Server
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    POST /acme/process HTTP/1.1
    Cookie: $Version="1";
            Customer="WILE_E_COYOTE"; $Path="/acme";
            Part_Number="Rocket_Launcher_0001"; $Path="/acme";
            Shipping="FedEx"; $Path="/acme"
    [form data]

User chooses to process order.

8. Server -> User Agent

    HTTP/1.1 200 OK

Transaction is complete.

The user agent makes a series of requests on the origin server, after each of which it receives a new cookie. All
the cookies have the same Path attribute and (default) domain. Because the request-URIs all path-match /acme,
the Path attribute of each cookie, each request contains all the cookies received so far.

4.2.  Example 2

This example illustrates the effect of the Path attribute. All detail of request and response headers has been
omitted. Assume the user agent has no stored cookies.

Imagine the user agent has received, in response to earlier requests, the response headers

   Set-Cookie2: Part_Number="Rocket_Launcher_0001"; Version="1";
           Path="/acme"

and

   Set-Cookie2: Part_Number="Riding_Rocket_0023"; Version="1";
           Path="/acme/ammo"

A subsequent request by the user agent to the (same) server for URLs of the form /acme/ammo/... would
include the following request header:

   Cookie: $Version="1";
           Part_Number="Riding_Rocket_0023"; $Path="/acme/ammo";
           Part_Number="Rocket_Launcher_0001"; $Path="/acme"

Note that the NAME=VALUE pair for the cookie with the more specific Path attribute, /acme/ammo, comes
before the one with the less specific Path attribute, /acme. Further note that the same cookie name appears more
than once.

A subsequent request by the user agent to the (same) server for a URL of the form /acme/parts/ would include
the following request header:

   Cookie: $Version="1"; Part_Number="Rocket_Launcher_0001";
   $Path="/acme"

Here, the second cookie's Path attribute /acme/ammo is not a prefix of the request URL, /acme/parts/, so the
cookie does not get forwarded to the server.
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5.  IMPLEMENTATION CONSIDERATIONS

Here we provide guidance on likely or desirable details for an origin server that implements state management.

5.1.  Set-Cookie2 Content

An origin server's content should probably be divided into disjoint application areas, some of which require the
use of state information. The application areas can be distinguished by their request URLs. The Set-Cookie2
header can incorporate information about the application areas by setting the Path attribute for each one.

The session information can obviously be clear or encoded text that describes state. However, if it grows too
large, it can become unwieldy. Therefore, an implementor might choose for the session information to be a
key to a server-side resource. Of course, using a database creates some problems that this state management
specification was meant to avoid, namely:

1. keeping real state on the server side;

2. how and when to garbage-collect the database entry, in case the user agent terminates the session by, for
example, exiting.

5.2.  Stateless Pages

Caching benefits the scalability of WWW. Therefore it is important to reduce the number of documents that
have state embedded in them inherently. For example, if a shopping-basket-style application always displays a
user's current basket contents on each page, those pages cannot be cached, because each user's basket's contents
would be different. On the other hand, if each page contains just a link that allows the user to "Look at My
Shopping Basket", the page can be cached.

5.3.  Implementation Limits

Practical user agent implementations have limits on the number and size of cookies that they can store.
In general, user agents' cookie support should have no fixed limits. They should strive to store as many
frequently-used cookies as possible. Furthermore, general-use user agents SHOULD provide each of the
following minimum capabilities individually, although not necessarily simultaneously:

• at least 300 cookies

• at least 4096 bytes per cookie (as measured by the characters that comprise the cookie non-terminal in the
syntax description of the Set-Cookie2 header, and as received in the Set-Cookie2 header)

• at least 20 cookies per unique host or domain name

User agents created for specific purposes or for limited-capacity devices SHOULD provide at least 20 cookies
of 4096 bytes, to ensure that the user can interact with a session-based origin server.

The information in a Set-Cookie2 response header MUST be retained in its entirety. If for some reason there is
inadequate space to store the cookie, it MUST be discarded, not truncated.

Applications should use as few and as small cookies as possible, and they should cope gracefully with the loss
of a cookie.

5.3.1.  Denial of Service Attacks

User agents MAY choose to set an upper bound on the number of cookies to be stored from a given host or
domain name or on the size of the cookie information. Otherwise a malicious server could attempt to flood a
user agent with many cookies, or large cookies, on successive responses, which would force out cookies the
user agent had received from other servers. However, the minima specified above SHOULD still be supported.
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6.  PRIVACY

Informed consent should guide the design of systems that use cookies. A user should be able to find out how
a web site plans to use information in a cookie and should be able to choose whether or not those policies are
acceptable. Both the user agent and the origin server must assist informed consent.

6.1.  User Agent Control

An origin server could create a Set-Cookie2 header to track the path of a user through the server. Users
may object to this behavior as an intrusive accumulation of information, even if their identity is not evident.
(Identity might become evident, for example, if a user subsequently fills out a form that contains identifying
information.) This state management specification therefore requires that a user agent give the user control over
such a possible intrusion, although the interface through which the user is given this control is left unspecified.
However, the control mechanisms provided SHALL at least allow the user

• to completely disable the sending and saving of cookies.

• to determine whether a stateful session is in progress.

• to control the saving of a cookie on the basis of the cookie's Domain attribute.

Such control could be provided, for example, by mechanisms

• to notify the user when the user agent is about to send a cookie to the origin server, to offer the option not to
begin a session.

• to display a visual indication that a stateful session is in progress.

• to let the user decide which cookies, if any, should be saved when the user concludes a window or user
agent session.

• to let the user examine and delete the contents of a cookie at any time.

A user agent usually begins execution with no remembered state information. It SHOULD be possible to
configure a user agent never to send Cookie headers, in which case it can never sustain state with an origin
server. (The user agent would then behave like one that is unaware of how to handle Set-Cookie2 response
headers.)

When the user agent terminates execution, it SHOULD let the user discard all state information. Alternatively,
the user agent MAY ask the user whether state information should be retained; the default should be "no". If
the user chooses to retain state information, it would be restored the next time the user agent runs.

NOTE: User agents should probably be cautious about using files to store cookies long-term. If a user runs
more than one instance of the user agent, the cookies could be commingled or otherwise corrupted.

6.2.  Origin Server Role

An origin server SHOULD promote informed consent by adding CommentURL or Comment information to
the cookies it sends. CommentURL is preferred because of the opportunity to provide richer information in a
multiplicity of languages.

6.3.  Clear Text

The information in the Set-Cookie2 and Cookie headers is unprotected. As a consequence:

1. Any sensitive information that is conveyed in them is exposed to intruders.

2. A malicious intermediary could alter the headers as they travel in either direction, with unpredictable
results.

These facts imply that information of a personal and/or financial nature should only be sent over a secure
channel. For less sensitive information, or when the content of the header is a database key, an origin server
should be vigilant to prevent a bad Cookie value from causing failures.
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A user agent in a shared user environment poses a further risk. Using a cookie inspection interface, User B
could examine the contents of cookies that were saved when User A used the machine.
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7.  SECURITY CONSIDERATIONS

7.1.  Protocol Design

The restrictions on the value of the Domain attribute, and the rules concerning unverifiable transactions,
are meant to reduce the ways that cookies can "leak" to the "wrong" site. The intent is to restrict cookies to
one host, or a closely related set of hosts. Therefore a request-host is limited as to what values it can set for
Domain. We consider it acceptable for hosts host1.foo.com and host2.foo.com to share cookies, but not a.com
and b.com.

Similarly, a server can set a Path only for cookies that are related to the request-URI.

7.2.  Cookie Spoofing

Proper application design can avoid spoofing attacks from related domains. Consider:

1. User agent makes request to victim.cracker.edu, gets back cookie session_id="1234" and sets the default
domain victim.cracker.edu.

2. User agent makes request to spoof.cracker.edu, gets back cookie session-id="1111", with
Domain=".cracker.edu".

3. User agent makes request to victim.cracker.edu again, and passes

     Cookie: $Version="1"; session_id="1234",
             $Version="1"; session_id="1111"; $Domain=".cracker.edu"

The server at victim.cracker.edu should detect that the second cookie was not one it originated by noticing
that the Domain attribute is not for itself and ignore it.

7.3.  Unexpected Cookie Sharing

A user agent SHOULD make every attempt to prevent the sharing of session information between hosts that
are in different domains. Embedded or inlined objects may cause particularly severe privacy problems if they
can be used to share cookies between disparate hosts. For example, a malicious server could embed cookie
information for host a.com in a URI for a CGI on host b.com. User agent implementors are strongly encouraged
to prevent this sort of exchange whenever possible.

7.4.  Cookies For Account Information

While it is common practice to use them this way, cookies are not designed or intended to be used to hold
authentication information, such as account names and passwords. Unless such cookies are exchanged over an
encrypted path, the account information they contain is highly vulnerable to perusal and theft.
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8.  OTHER, SIMILAR, PROPOSALS

Apart from RFC 2109, three other proposals have been made to accomplish similar goals. This specification
began as an amalgam of Kristol's State-Info proposal [DMK95] and Netscape's Cookie proposal [Netscape].

Brian Behlendorf proposed a Session-ID header that would be user-agent-initiated and could be used by an
origin server to track "clicktrails". It would not carry any origin-server-defined state, however. Phillip Hallam-
Baker has proposed another client-defined session ID mechanism for similar purposes.

While both session IDs and cookies can provide a way to sustain stateful sessions, their intended purpose
is different, and, consequently, the privacy requirements for them are different. A user initiates session
IDs to allow servers to track progress through them, or to distinguish multiple users on a shared machine.
Cookies are server-initiated, so the cookie mechanism described here gives users control over something that
would otherwise take place without the users' awareness. Furthermore, cookies convey rich, server-selected
information, whereas session IDs comprise user-selected, simple information.
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9.  HISTORICAL

9.1.  Compatibility with Existing Implementations

Existing cookie implementations, based on the Netscape specification, use the Set-Cookie (not Set-Cookie2)
header. User agents that receive in the same response both a Set-Cookie and Set-Cookie2 response header
for the same cookie MUST discard the Set-Cookie information and use only the Set-Cookie2 information.
Furthermore, a user agent MUST assume, if it received a Set-Cookie2 response header, that the sending server
complies with this document and will understand Cookie request headers that also follow this specification.

New cookies MUST replace both equivalent old- and new-style cookies. That is, if a user agent that follows
both this specification and Netscape's original specification receives a Set-Cookie2 response header, and
the NAME and the Domain and Path attributes match (per the Cookie Management section) a Netscape-
style cookie, the Netscape-style cookie MUST be discarded, and the user agent MUST retain only the cookie
adhering to this specification.

Older user agents that do not understand this specification, but that do understand Netscape's original
specification, will not recognize the Set-Cookie2 response header and will receive and send cookies according
to the older specification.

A user agent that supports both this specification and Netscape-style cookies SHOULD send a Cookie request
header that follows the older Netscape specification if it received the cookie in a Set-Cookie response header
and not in a Set-Cookie2 response header. However, it SHOULD send the following request header as well:

   Cookie2: $Version="1"

The Cookie2 header advises the server that the user agent understands new-style cookies. If the server
understands new-style cookies, as well, it SHOULD continue the stateful session by sending a Set-Cookie2
response header, rather than Set-Cookie. A server that does not understand new-style cookies will simply
ignore the Cookie2 request header.

9.2.  Caching and HTTP/1.0

Some caches, such as those conforming to HTTP/1.0, will inevitably cache the Set-Cookie2 and Set-Cookie
headers, because there was no mechanism to suppress caching of headers prior to HTTP/1.1. This caching can
lead to security problems. Documents transmitted by an origin server along with Set-Cookie2 and Set-Cookie
headers usually either will be uncachable, or will be "pre-expired". As long as caches obey instructions not to
cache documents (following Expires: <a date in the past> or Pragma: no-cache (HTTP/1.0), or Cache-control:
no-cache (HTTP/1.1)) uncachable documents present no problem. However, pre-expired documents may be
stored in caches. They require validation (a conditional GET) on each new request, but some cache operators
loosen the rules for their caches, and sometimes serve expired documents without first validating them. This
combination of factors can lead to cookies meant for one user later being sent to another user. The Set-Cookie2
and Set-Cookie headers are stored in the cache, and, although the document is stale (expired), the cache returns
the document in response to later requests, including cached headers.
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