
Network Working Group S. Hollenbeck
Request for Comments: 3470 VeriSign, Inc.
BCP: 70 M. Rose
Category: Best Current Practice Dover Beach Consulting, Inc.

L. Masinter
Adobe Systems Incorporated

January 2003

Guidelines for the Use of Extensible
Markup Language (XML)

Status of this Memo

This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2003). All Rights Reserved.

Abstract

The Extensible Markup Language (XML) is a framework for structuring data. While it evolved from Standard
Generalized Markup Language (SGML) -- a markup language primarily focused on structuring documents --
XML has evolved to be a widely-used mechanism for representing structured data.

There are a wide variety of Internet protocols being developed; many have need for a representation for
structured data relevant to their application. There has been much interest in the use of XML as a representation
method. This document describes basic XML concepts, analyzes various alternatives in the use of XML, and
provides guidelines for the use of XML within IETF standards-track protocols.

Conventions Used In This Document

This document recommends, as policy, what specifications for Internet protocols -- and, in particular, IETF
standards track protocol documents -- should include as normative language within them. The capitalized
keywords "SHOULD", "MUST", "REQUIRED", etc. are used in the sense of how they would be used within
other documents with the meanings as specified in BCP 14, RFC 2119 [1].

#rfc.authors.1
#rfc.authors.1
https://www.rfc-editor.org/info/bcp70
#rfc.authors.2
#rfc.authors.2
#rfc.authors.3
#rfc.authors.3

RFC 3470 XML Within IETF Protocols January 2003

Table of Contents

1 Introduction and Overview... 4

1.1 Intended Audience... 4

1.2 Scope..4

1.3 XML Evolution..4

1.4 XML Users, Support Groups, and Additional Information.. 4

2 XML Selection Considerations..5

3 XML Alternatives... 6

4 XML Use Considerations and Recommendations.. 7

4.1 XML Syntax and Well-Formedness..7

4.2 XML Information Set..7

4.3 Syntactic Restrictions.. 7

4.4 XML Declarations... 8

4.5 XML Processing Instructions..8

4.6 XML Comments.. 8

4.7 Validity and Extensibility..9

4.8 Semantics as Well as Syntax.. 9

4.9 Namespaces..10
 4.9.1 Namespaces and Attributes.. 10

4.10 Element and Attribute Design Considerations..11

4.11 Binary Data and Text with Control Characters.. 12

4.12 Incremental Processing..12

4.13 Entity Declarations and Entity References... 12

4.14 External References... 12

4.15 URI Processing.. 12

4.16 White Space... 13

4.17 Interaction with the IANA.. 13

5 Internationalization Considerations... 15

5.1 Character Sets and Encodings...15

5.2 Language Declaration..15

5.3 Other Internationalization Considerations...15

6 IANA Considerations... 16

7 Security Considerations... 17

8 Acknowledgements..18

9 References.. 19

Hollenbeck, et al. Best Current Practice [Page 2]

RFC 3470 XML Within IETF Protocols January 2003

9.1 Normative References... 19

9.2 Informative References..19

Authors' Addresses...22

Intellectual Property and Copyright Statements.. 22

Hollenbeck, et al. Best Current Practice [Page 3]

RFC 3470 XML Within IETF Protocols January 2003

1. Introduction and Overview

The Extensible Markup Language (XML, [8]) is a framework for structuring data. While it evolved from the
Standard Generalized Markup Language (SGML, [30]) -- a markup language primarily focused on structuring
documents -- XML has evolved to be a widely-used mechanism for representing structured data in protocol
exchanges. See "XML in 10 points" [47] for an introduction to XML.

1.1. Intended Audience

Many Internet protocol designers are considering using XML and XML fragments within the context of
existing and new Internet protocols. This document is intended as a guide to XML usage and as IETF policy for
standards track documents. Experienced XML practitioners will likely already be familiar with the background
material here, but the guidelines are intended to be appropriate for those readers as well.

1.2. Scope

This document is intended to give guidelines for the use of XML content within a larger protocol. The goal
is not to suggest that XML is the "best" or "preferred" way to represent data; rather, the goal is to lay out the
context for the use of XML within a protocol once other factors point to XML as a possible data representation
solution. The Common Name Resolution Protocol (CNRP, [24]) is an example of a protocol that would be
addressed by these guidelines if it were being newly defined. This document does not address the use of
protocols like SMTP or HTTP to send XML documents as ordinary email or web content.

There are a number of protocol frameworks already in use or under development which focus entirely on
"XML protocol" -- the exclusive use of XML as the data representation in the protocol. For example, the World
Wide Web Consortium (W3C) is developing an XML Protocol framework based on SOAP ([45] and [46]). The
applicability of such protocols is not part of the scope of this document.

In addition, there are higher-level representation frameworks, based on XML, that have been designed as
carriers of certain classes of information; for example, the Resource Description Framework (RDF, [38]) is an
XML-based representation for logical assertions. This document does not provide guidelines for the use of such
frameworks.

1.3. XML Evolution

XML 1.0 was originally published as a W3C recommendation in February 1998 [35], and was revised in a
2nd edition [8] in October 2000. Several additional facilities have also been defined that layer on the base
specification. Although these additions are designed to be consistent with XML 1.0, they have varying levels of
stability, consensus, and implementation. Accordingly, this document identifies the major evolutionary features
of XML and makes suggestions as to the circumstances in which each feature should be used.

1.4. XML Users, Support Groups, and Additional Information

There are many XML support groups, with some devoted to the entire XML industry1, some devoted to develo
pers2, some devoted to the business applications of XML3, and many, many groups devoted to the use of XML
in a particular context.

It is beyond the scope of this document to provide a comprehensive list of referrals. Interested readers are
directed to the three references above as starting points, as well as their favorite Internet search engine.

1 http://xml.org/
2 http://xmlhack.com/
3 http://oasis-open.org/

Hollenbeck, et al. Best Current Practice [Page 4]

http://xml.org/
http://xmlhack.com/
http://xmlhack.com/
http://oasis-open.org/

RFC 3470 XML Within IETF Protocols January 2003

2. XML Selection Considerations

XML is a tool that provides a means towards an end. Choosing the right tool for a given task is an essential part
of ensuring that the task can be completed in a satisfactory manner. This section describes factors to be aware
of when considering XML as a tool for use in IETF protocols:

1. XML is a meta-markup language that can be used to define markup languages for specific domains and
problem spaces.

2. XML provides both logical structure and physical structure to describe data. Data framing is built-in.

3. XML instances can be validated against the formal definition of a protocol specification.

4. XML supports internationalization.

5. XML is extensible. Unlike some other markup languages (such as HTML), new tags (and thus new protocol
elements) can be defined without requiring changes to XML itself.

6. XML is still evolving. The formal specifications are still being influenced and updated as use experience is
gained and applied.

7. XML does not provide native mechanisms to support detailed data typing. Additional mechanisms (such as
those described in Section 4.7) are required to specify abstract protocol data types.

8. XML is text-based, so XML fragments are easily created, edited, and managed using common utilities.
Further, being text-based means it more readily supports incremental development, debugging, and logging.
A simple "canned" XML fragment can be embedded within a program as a string constant, rather than
having to be constructed.

9. Binary data has to be encoded into a text-based form to be represented in XML.

10. XML is verbose when compared with many other structured data representation languages. A
representation with element extensibility and human readability typically requires more bits when
compared to one optimized for efficient machine processing.

11. XML implementations are still relatively new. As designers and implementers gain experience, it is not
uncommon to find defects in early and current products.

12. XML support is available in a large number of software development utilities, available in both open source
and proprietary products.

13. XML processing speed can be an issue in some environments. XML processing can be slower because
XML data streams may be larger than other representations, and the use of general purpose XML parsers
will add a software layer with its own performance costs (though these costs can be reduced through
consistent use of an optimized parser). In some situations, processing XML requires examining every
byte of the entire XML data stream, with higher overhead than with representations where uninteresting
segments can be skipped.

Hollenbeck, et al. Best Current Practice [Page 5]

RFC 3470 XML Within IETF Protocols January 2003

3. XML Alternatives

This document focuses on guidelines for the use of XML. It is useful to consider why one might use XML
as opposed to some other mechanism. This section considers some other commonly used representation
mechanisms and compares XML to those alternatives.

For many fundamental protocols, the extensibility requirements are modest, and the performance requirements
are high enough that fixed binary data blocks are the appropriate representation; mechanisms such as XML
merely add bloat. RFC 3252 [23] describes a humorous example of XML as protocol bloat.

In addition, there are other representation and extensibility frameworks that have been used successfully within
communication protocols. For example, Abstract Syntax Notation 1 (ASN.1) [28] along with the corresponding
Basic Encoding Rules (BER, [29]) are part of the OSI communication protocol suite, and have been used
in many subsequent communications standards (e.g., the ANSI Information Retrieval protocol [27] and the
Simple Network Management Protocol (SNMP, [13]). The External Data Representation (XDR, [14]) and
variations of it have been used in many other distributed network applications (e.g., the Network File System
(NFS) protocol [22]). With some ASN.1 encoding types, data types are explicit in the representation, while
with XDR, the data types of components are described externally as part of an interface specification.

Many other protocols use data structures directly (without data encapsulation) by describing the data structure
with Backus Normal Form (BNF, [25]); many IETF protocols use an Augmented Backus-Naur Form (ABNF,
[16]). The Simple Mail Transfer Protocol (SMTP, [21]) is an example of a protocol specified using ABNF.

ASN.1, XDR, and BNF are described here as examples of alternatives to XML for use in IETF protocols.
There are other alternatives, but a complete enumeration of all possible alternatives is beyond the scope of this
document.

Other representation methods may differ from XML in several important ways:

Text Encoding and character sets: the character encoding used to represent a formal specification. XML defines
a consistent character model based on the Universal Character Set (UCS, [31] and [33]), and requires that XML
parsers accept at least UTF-8 [4] and UTF-16 [20], and allows for other encodings. While ASN.1 and XDR
may carry strings in any encoding, there is no common mechanism for defining character encodings within
them. Typically, ABNF definitions tend to be defined in terms of octets or characters in ASCII.

Data Encoding: XML is defined as a sequence of characters, rather than a sequence of bytes. XML Schema
[42] includes mechanisms for representing some data types (integer, date, array, etc.) but many binary data
types are encoded in Base64 [15] or hexadecimal. ASN.1 and XDR have rich mechanisms for encoding a wide
variety of data types.

Extensibility: XML has a rich extensibility model such that XML specifications can frequently be versioned
independently. Specifications can be extended by adding new element names and attributes (if done
compatibly); other extensions can be added by defining new XML namespaces [9], though there is no standard
mechanism in XML to indicating whether or not new extensions are mandatory to recognize. Similarly,
there are several techniques available to extend ASN.1 specifications. XDR specifications tend to not be
independently extensible by different parties because the framing and data types are implicit and not self-
describing. The extensibility of BNF-based protocol elements needs to be explicitly planned.

Legibility of protocol elements: As noted above, XML is text-based, and thus carries the advantages (and
disadvantages) of text-based protocol elements. Typically this is shared with (A)BNF-defined protocol
elements. ASN.1 and XDR use binary encodings which are not easily human readable.

Hollenbeck, et al. Best Current Practice [Page 6]

RFC 3470 XML Within IETF Protocols January 2003

4. XML Use Considerations and Recommendations

This section notes several aspects of XML and makes recommendations for use. Since the 1998 publication
of XML version 1 [35], an editorial second edition [8] was published in 2000; this section refers to the second
edition.

4.1. XML Syntax and Well-Formedness

XML [8] is defined in terms of a concrete syntax: a sequence of characters, using the characters "<", "=",
"&", etc. as delimiters. An instance is XML if and only if it is well-formed, i.e., all character and markup data
conforms to the structural rules defined in section 2.1 of [8].

Character and markup data that is not well-formed is not XML; well-formedness is the basis for syntactic
compatibility with XML. Without well-formedness, all of the advantages of using XML disappear. For this
reason, it is recommended that protocol specifications explicitly require XML well-formedness ("MUST be
well-formed").

The IETF has a long-standing tradition of "be liberal in what you accept" that might seem to be at odds with
this recommendation. Given that XML requires well-formedness, conformant XML parsers are intolerant
of well-formedness errors. When specifying the handing of erroneous XML protocol elements, a protocol
design must never recommend attempting to partially interpret non-well-formed instances of an element which
is required to be XML. Reasonable behaviors in such a scenario could include attempting retransmission or
aborting an in-progress session.

4.2. XML Information Set

In addition to the concrete syntax of XML, there is an abstract model of XML content known as the
"Information Set" (infoset) [37]. One might think of an XML parser as consuming the concrete syntax and
producing an XML Information Set for further processing.

In typical use of XML, the definition of allowable XML documents is often defined in terms of the Information
Set of the XML and not the concrete syntax. The notion is that any syntactic representation which yielded the
same information set would be treated equivalently.

It some cases, protocols have been defined solely in terms of the XML Information Set, or by allowing other
concrete syntax representations. However, since the context of XML embedded within other Internet protocols
requires an unambiguous definition of the concrete syntax, defining an XML protocol element in terms of
its XML Information Set alone and allowing other concrete syntax representations is out of scope for this
document.

4.3. Syntactic Restrictions

In some circumstances a protocol designer may be tempted to define an XML-based protocol element
as "XML", but at the same time imposing additional restrictions beyond those imposed by the XML
recommendation itself -- for example, restricting the document character encoding, or avoiding CDATA
sections, character entity references, imposing additional restrictions on use of white space, etc. The general
category of restrictions addressed by this section are ones that would allow some but not other of the set of
syntactic representations which have the same canonical representation according to canonical XML described
in RFC 3076 [6].

Making these kinds of restrictions in a protocol definition may have the disadvantage that an implementer of
the protocol may not be able to use an otherwise conforming XML processor to parse the XML-based protocol
elements. In some cases, the motivation for subsetting XML is to allow implementers to build special-purpose
processors that are lighter weight than a full-scale conforming XML processor. There are a number of good,
conforming XML parsers that are small, fast, and free, while special-purpose processors have frequently been
known to fail to handle some cases of legal XML syntax.

Hollenbeck, et al. Best Current Practice [Page 7]

http://www.w3.org/TR/REC-xml#sec-well-formed

RFC 3470 XML Within IETF Protocols January 2003

In general, such syntactic restrictions should be avoided. In circumstances where restrictions on the variability
of the syntactic representation of XML is necessary for one reason or another, designers should consider using
"Canonical XML" [6] as the definition of the protocol element, since all such variability has been removed.
Some specific issues are discussed in Section 4.4, Section 4.13, and Section 5.1 below.

4.4. XML Declarations

An XML declaration (defined in section 2.8 of [8]) is a small header at the beginning of an XML data stream
that indicates the XML version and the character encoding used. For example,

<?xml version="1.0" encoding="UTF-8"?>

specifies the use of XML version 1 and UTF-8 character encoding.

In some uses of XML as an embedded protocol element, the XML used is a small fragment in a larger context,
where the XML version is fixed at "1.0" and the character encoding is known to be "UTF-8". In those cases,
an XML declaration might add extra overhead. In cases where the XML is a larger component which may find
its way alone as an external entity body (transported as a MIME message, for example), the XML declaration
is an important marker and is useful for reliability and extensibility. The XML declaration is also an important
marker for character set/encoding (see Section 5.1), if any encoding other than UTF-8 or UTF-16 is used. Note
that in the case of UTF-16, XML requires that the entity starts with a Byte Order Mark (BOM), which is not
part of the character data. Note that the XML Declaration itself is not part of the XML document's Information
Set.

Protocol specifications must be clear about use of XML declarations. XML [8] notes that "XML documents
should begin with an XML declaration which specifies the version of XML being used." In general, an XML
declaration should be encouraged ("SHOULD be present") and must always be allowed ("MAY be sent"). An
XML declaration should be required in cases where, if allowed, the character encoding is anything other than
UTF-8 or UTF-16.

4.5. XML Processing Instructions

An XML processing instruction (defined in section 2.6 of [8]) is a component of an XML document that
signals extra "out of band" information to the receiver; a common use of XML processing instructions are for
document applications. For example, the XML2RFC application used to generate this document and described
in RFC 2629 [19] supports a "table of contents" processing instruction:

<?rfc toc="yes"?>

As described in section 2.6 of [8], processing instructions are not part of the document's character data, but
must be passed through to the application. As a consequence, it is recommended that processing instructions
be ignored when encountered in normal protocol processing. It is thus also recommended that processing
instructions not be used to define normative protocol data structures or extensions for the following reasons:

• Processing instructions are not namespace aware; there is no way to qualify a processing instruction target
with a namespace.

• Processing instruction use can not be constrained by most schema languages,

• Character references are not recognized within a processing instruction.

• Processing instructions don't have any XML-defined structure beyond the division between the target
and everything else. This means that applications typically have to parse the content of the processing
instruction in a system-dependent way; if the content was provided within an element instead, the structure
could be expressed in the XML and the parsing could be done by the XML parser.

4.6. XML Comments

An XML comment (defined in section 2.5 of [8]) is a component of an XML document that provides
descriptive information that is not part of the document's character data. XML comments, like comments used

Hollenbeck, et al. Best Current Practice [Page 8]

http://www.w3.org/TR/REC-xml#sec-prolog-dtd
http://www.w3.org/TR/REC-xml#sec-pi
http://www.w3.org/TR/REC-xml#sec-pi
http://www.w3.org/TR/REC-xml#sec-comments

RFC 3470 XML Within IETF Protocols January 2003

in programming languages, are often used to provide explanatory information in human-understandable terms.
An example:

<!-- This is a example comment. -->

XML comments can be ignored by conformant processors. As a consequence, it is strongly recommended
that comments not be used to define normative protocol data structures or extensions. It is thus also strongly
recommended that comments be ignored if encountered in normal protocol processing.

4.7. Validity and Extensibility

One important value of XML is that there are formal mechanisms for defining structural and data content
constraints; these constrain the identity of elements or attributes or the values contained within them. There is
more than one such formalism:

• A "Document Type Definition" (DTD) is defined in section 2.8 of [8]; the concept came from a similar
mechanism for SGML. There is significant experience with using DTDs, including in IETF protocols.

• XML Schema (defined in [41] and [42]) provides additional features to allow a tighter and more precise
specification of allowable protocol syntax and data type specifications.

• There are also a number of other mechanisms for describing XML instance validity; these include, for
example, Schematron [49] and RELAX NG [48]. Part 2 of the ISO/IEC Document Schema Definition
Language (DSDL, [32]) standard is based on RELAX NG.

There is ongoing discussion (and controversy) within the XML community on the use and applicability
of various validity constraint mechanisms. The choice of tool depends on the needs for extensibility or
for a formal language and mechanism for constraining permissible values and validating adherence to the
constraints.

There are cases where protocols have defined validity using one or another validity mechanism, but the
protocol definitions have not insisted that all corresponding protocol elements be "valid". The decision depends
in part on the design for protocol extensibility. Each formalism has different ways of allowing for future
extensions; in addition, a protocol design may have its own versioning mechanism, way of updating the
schema, or pointing to a new one. For example, the use of XML namespaces (Section 4.9) with XML Schema
allows other kinds of extensibility without compromising schema validity.

No matter what formalism is chosen, there are usually additional syntactic constraints, and inevitably additional
semantic constraints, on the validity of XML elements that cannot be expressed in the formalism.

This document makes the following recommendations for the definition of protocols using XML:

• Protocols should use an appropriate formalism for defining validity of XML protocol elements.

• Protocols may or may not insist that all corresponding protocol elements be valid, according to the validity
mechanism chosen; in either case, the extensibility design should be clear. What happens if the data is not
valid?

• As described in Section 3 there is no standard mechanism in XML for indicating whether or not new
extensions are mandatory to recognize. XML-based protocol specifications should thus explicitly describe
extension mechanisms and requirements to recognize or ignore extensions.

An idealized model for XML processing might first check for well-formedness; if OK, apply the primary
formalism and, if the instances "passes", apply the other constraints so that the entire set (or as much as is
machine processable) can be checked at the same time.

However, it is reasonable to allow conforming implementations to avoid doing validation at run-time and rely
instead on ad-hoc code to avoid the higher expense, for example, of schema validation, especially given that
there will likely be additional hand-crafted semantic validation.

Hollenbeck, et al. Best Current Practice [Page 9]

http://www.w3.org/TR/REC-xml#sec-prolog-dtd

RFC 3470 XML Within IETF Protocols January 2003

4.8. Semantics as Well as Syntax

While the definition of an XML protocol element using a validity formalism is useful, it is not sufficient. XML
by itself does not supply semantics. Any document defining a protocol element with XML MUST also have
sufficient prose in the document describing the semantics of whatever XML the document has elected to define.

4.9. Namespaces

XML namespaces, defined in [9], provide a means of assigning markup to a specific vocabulary. If
two elements or attributes from different vocabularies have the same name, they can be distinguished
unambiguously if they belong to different namespaces. Additionally, namespaces provide significant support
for protocol extensibility as they can be defined, reused, and processed dynamically.

Markup vocabulary collisions are very possible when namespaces are not used to separate and uniquely
identify vocabularies. Protocol definitions should use existing XML namespaces where appropriate. When
a new namespace is needed, the "namespace name" is a URI that is used to identify the namespace; it's also
useful for that URI to point to a description of the namespace. Typically (and recommended practice in W3C)
is to assign namespace names using persistent http URIs.

In the case of namespaces in IETF standards-track documents, it would be useful if there were some permanent
part of the IETF's own web space that could be used for this purpose. In lieu of such, other permanent URIs
can be used, e.g., URNs in the IETF URN namespace (see [11] and [12]). Although there are instances of IETF
specifications creating new URI schemes to define XML namespaces, this practice is strongly discouraged.

4.9.1. Namespaces and Attributes

There is a frequently misunderstood aspect of the relationship between unprefixed attributes and the default
XML namespace - the natural assumption is that an unprefixed attribute is qualified by the default namespace,
but this is not true. Rather, the unprefixed attribute belongs to no namespace at all. Thus, in the following
example:

 <ns1:fox a="xxx" ns1:b="qqq"
 xmlns="http://example.org"/>
 <fox a="xxx" ns1:b="qqq"
 xmlns="http://example.org" xmlns:ns1="http://example.org"/>

the attribute "a" is in no namespace, while "ns1:b" is the same namespace as the containing element. A specific
description of the relationship between default namespaces and attributes can be found in section 5.2 of [9].
The practical implication of the relationship between namespaces and attributes is that care must be taken to
ensure that no element contains multiple attributes that have identical names or have qualified names with the
same local part and with prefixes which have been bound to namespace names that are identical.

In XML applications, the choice between prefixed and non-prefixed attributes frequently is based on whether
they always appear inside elements of the same namespace (in which case non-prefixed and thereby non-
namespaced names are used) or whether it's required that they can be applied to elements in other arbitrary
namespaces (in which case a prefixed name is used). Both situations occur in the XSLT [43] language: while
attributes are unprefixed when they occur inside elements in the XSLT namespace, such as:

 <xsl:value-of select="."/>

they are prefixed when they appear in non-XSLT elements, such as the "xsl:version" attribute when using
"literal result element stylesheets":

Hollenbeck, et al. Best Current Practice [Page 10]

http://www.w3.org/TR/REC-xml-names#defaulting

RFC 3470 XML Within IETF Protocols January 2003

 <html xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/TR/xhtml1/strict">
 <head>
 <title>Expense Report Summary</title>
 </head>
 <body>
 <p>Total: <xsl:value-of select="exp-rep/total"/></p>
 </body>
 </html>

4.10. Element and Attribute Design Considerations

XML provides much flexibility in allowing a designer to use either elements, attributes, or element content to
carry data. This section gives a flavor of the design considerations; there is much written about this in the XML
literature. Consistent use of elements, attributes, and values is an important characteristic of a sound design.

Attributes are generally intended to contain meta-data that describes the element, and as such they are subject
to the following restrictions:

• Attributes are unordered,

• There can be no more than one instance of a given attribute within a given element, though an attribute may
contain several values separated by white space ([8], section 2.3 and 3.3.1),

• Attribute values can have no internal XML markup for providing internal structure, and

• Attribute values are normalized ([8], section 3.3) before processing

Consider the following example that describes an IP address using an attribute to describe the address value:

 <address addrType="ipv4">10.1.2.3</address>

One might encode the same information using an <addrType> element instead of an "addrType" attribute:

 <address>
 <addrType>ipv4</addrType>
 <value>10.1.2.3</value>
 </address>

Another way of encoding the same information would be to use markup for the "addrType":

 <address>
 <addrType><ipv4/></addrType>
 <value>10.1.2.3</value>
 </address>

Choosing between these designs involves tradeoffs concerning, among other considerations, the likely
extensibility patterns and the ability of the formalism to constrain the values appropriately. In the first example,
the attribute can be thought of as meta-data to the element which it modifies, and provides for a kind of
"element extensibility". The third example allows for a different kind of extensibility: the "ipv4" space can be
extended using other namespaces, and the <ipv4> element can include additional markup.

Many protocols include parameters that are selected from an enumerated set of values. Such enumerated values
can be encoded as elements, attributes, or strings within element values. Any protocol design should consider
how the set of enumerated values is to be extended: by revising the protocol, by including different values
in different XML namespaces, or by establishing an IANA registry (as per RFC 2434 [18]). In addition, a
common practice in XML is to use a URI as an XML attribute value or content.

Hollenbeck, et al. Best Current Practice [Page 11]

http://www.w3.org/TR/REC-xml#sec-common-syn
http://www.w3.org/TR/REC-xml#sec-attribute-types
http://www.w3.org/TR/REC-xml#attdecls

RFC 3470 XML Within IETF Protocols January 2003

Languages that describe syntactic validity (including XML Schema and DTDs) often provide a mechanism
for specifying "default" values for an attribute. If an element does not specify a value for the attribute, then the
"default" value is used. The use of default values for attributes is discouraged by this document. Although the
use of this feature can reduce both the size and clutter of XML documents, it has a negative impact on software
which doesn't know the document's validity constraints (e.g., for packet tracing or digital signature).

4.11. Binary Data and Text with Control Characters

XML is defined as a character stream rather than a stream of octets. There is no way to embed raw binary
data directly within an XML data stream; all binary data must be encoded as characters. There are a
number of possible encodings; for example, XML Schema [42] defines encodings using decimal digits for
integers, Base64 [15], or hexadecimal digits. In addition, binary data might be transmitted using some other
communication channel, and referenced within the XML data itself using a URI.

Protocols that need a container that can hold both structural data and large quantities of binary data should
consider carefully whether XML is appropriate, since the Base64 and hex encodings are inefficient. Otherwise,
protocols should use the mechanisms of XML Schema to represent binary data; the Base64 encoding is best for
larger quantities of data.

XML does not allow "control" characters (0x00-0x1F) except for TAB (0x09), CR (0x0A), and LF (0x0D).
They can not be specified even using character entity references. There is currently no common way of
encoding them within what is otherwise ordinary text. This means that strings that might be considered "text"
within an ABNF-defined protocol element may need to be treated as binary data within an XML representation,
or some other encoding mechanism might need to be invented.

4.12. Incremental Processing

In some situations, it is possible to incrementally process an XML document as each tag is received; this is
analogous to the process by which browsers incrementally render HTML pages as they are received. Note that
incremental processing is difficult to implement if interspersed across multiple interactions. In other words, if
a protocol requires incremental processing across both directions of a bidirectional stream, then it may place an
unusual burden on protocol implementers.

4.13. Entity Declarations and Entity References

In addition to its role as a validity mechanism, an XML DTD provides a facility for "entity declarations" ([8],
section 4.2). An entity declaration defines, in the DTD, a kind of macro capability where an "entity reference"
may be used to call up and include the content of the entity declaration.

This feature adds complexity to XML processing, and seems more appropriate for use of XML in document
processing than in data representation. As such, this document recommends avoiding entity declarations in
protocol specifications.

On the other hand, there are five standard entity references built into XML: "&", "<", ">", "'",
and """. XML also has the ability to write character data using numeric entity references (using the
Unicode [33] value for the character). Entity references are normally expanded before the XML Information
Set is computed. Restricting the use of these entity references would introduce an additional syntactic
restriction (see Section 4.3) unnecessarily; these entity references should be allowed.

4.14. External References

When using XML in the context of a stateless protocol, be it the protocol itself (e.g., SOAP), or simply as
content transferred by an existing protocol (e.g., XML/HTTP), care must be taken to not make the meaning
of a message depend on information outside the message itself. XML provides external entities (see Section
4.13), which are an easy way to make the meaning of a message depend on something external. Using schema
languages that can change the Infoset, like XML Schema, is another way.

Hollenbeck, et al. Best Current Practice [Page 12]

http://www.w3.org/TR/REC-xml#sec-entity-decl

RFC 3470 XML Within IETF Protocols January 2003

4.15. URI Processing

The XML Base specification [36] defines an attribute "xml:base" in the XML namespace that is intended to
affect the "base" to be used for relative URI processing described in RFC 2396 [17]. The facilities of xml:base
for controlling URI processing may be useful to protocol designers, but if xml:base is allowed the interaction
with any other protocol facilities for establishing URI context must be specified clearly. Note that use of
relative URIs in namespace declarations has been deprecated by the W3C; some specific issues with relative
URIs in namespace declarations and canonical XML can be found in section 1.3 of RFC 3076 [6].

Note also that, in many cases, the term "URI" and the syntactic use of URIs within XML allows non-ASCII
characters within URIs. For example, the XML Schema "anyURI" datatype ([42] section 3.2.17) allows for
direct encoding of characters outside of the US-ASCII range. Most current IETF protocols and specifications
do not allow this syntax. Protocol specifications should be clear about the range of characters specified, e.g.,
by adding a restriction to the range of characters allowed in the anyURI schema datatype, or by specifying that
characters outside the US-ASCII range should be escaped when passed to older protocols or APIs.

4.16. White Space

XML's prescribed white space handling behavior can be a source of confusion between protocol designers and
implementers. In XML instances all white space is considered significant and is by default visible to processing
applications. Consider this example from Section 4.10:

 <address>
 <addrType><ipv4/></addrType>
 <value>10.1.2.3</value>
 </address>

This fragment contains an <address> element and two child elements. It also contains white space for pretty-
printing purposes:

• at least three line separators, which will be converted by the XML processor to newline (U+000A)
characters (see section 2.11 of [8]), and

• one or more white space characters prefixing the <addrType> and <value> elements, which an XML
processor will make visible to software reading the instance.

Implementers might safely assume that they can ignore the white space in the example above, but white
space used for pretty-printing can be a source of confusion in other situations. Consider a minor change to the
<value> element:

 <value>
 10.1.2.3
 </value>

where white space is found on both sides of the IP address. XML processors treat the white space surrounding
"10.1.2.3" as an integral part of the <value> element. A failure to recognize this behavior can lead to confusion
and errors in both design and implementation.

All white space is considered significant in XML instances. As a consequence, it is recommended that protocol
designers provide specific guidelines to address white space handling within protocols that use XML.

4.17. Interaction with the IANA

When XML is used in an IETF protocol there are multiple factors that might require IANA action, including:

• XML media types. A piece of XML in a protocol element is sometimes intrinsically bound to the protocol
context in which it appears, and in particular might be directly derived from and/or input to protocol state-
machine implementations. In cases where the XML content has no relevant meaning outside it's original

Hollenbeck, et al. Best Current Practice [Page 13]

https://www.rfc-editor.org/rfc/rfc3076.html#section-1.3
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/REC-xml#sec-line-ends

RFC 3470 XML Within IETF Protocols January 2003

protocol context, there is no reason to register a MIME type. When it is possible that XML content can be
interpreted outside of its original context (such as when that XML content is being stored in a file system or
tunneled over another protocol), then a MIME type can be registered to specify the specific format for the
data and to provide a hint as to how it might be processed.

If MIME labeling is needed, then the advice of RFC 3023 [5] applies. In particular, if the XML represents
a new language or document type, a new MIME media type should be registered for the reasons described
in RFC 3023 sections 7 and A.1. In situations where XML is used to encode generic structured data (e.g., a
document-oriented application that involves combining XML with a stylesheet), "application/xml" might be
appropriate ("MAY be used"). The "text/xml" media type is not recommended ("SHOULD NOT be used")
because of issues involving display behavior and default charsets.

• URI registration. There is an ongoing effort ([11], [12]) to create a URN namespace explicitly for defining
URIs for namespace names and other URI-designated protocol elements for use within IETF standards
track documents; it might also establish IETF policy for such use.

Hollenbeck, et al. Best Current Practice [Page 14]

https://www.rfc-editor.org/rfc/rfc3023.html#section-7
https://www.rfc-editor.org/rfc/rfc3023.html#appendix-A.1

RFC 3470 XML Within IETF Protocols January 2003

5. Internationalization Considerations

This section describes internationalization considerations for the use of XML to represent data in IETF
protocols. In addition to the recommendations here, IETF policy on the use of character sets and languages
described in RFC 2277 [3] also applies.

5.1. Character Sets and Encodings

IETF protocols frequently speak of the "character set" or "charset" of a string, which is used to denote both the
character repertoire and the encoding used to represent sequences of characters as sequences of bytes.

XML performs all character processing in terms of the Universal Character Set (UCS, [31] and [33]). XML
requires all XML processors to support both the UTF-8 [4] and UTF-16 [20] encodings of UCS, although other
encodings (charsets) compatible with UCS may be allowed. Documents and external parsed entities encoded in
UTF-16 are required to begin with a Byte Order Mark ([8] section 4.3.3).

IETF policy [3] requires that the UTF-8 charset be allowed for all text.

This document requires that IETF protocols using XML allow for the UTF-8 encoding of XML data. Since
conforming XML processors are mandated to also accept UTF-16 encoding, also allowing for UTF-16
encoding (with the mandated Byte Order Mark) is recommended. Some XML applications are using a Byte
Order Mark with UTF-8 encoding, but this use should not be encouraged and isn't appropriate for XML
embedded in other protocols.

Restricting XML data to only be expressed in UTF-8 is an additional syntactic restriction (see Section 4.3)
which, depending on circumstances, might add additional implementation complexity. When encodings other
than UTF-8 or UTF-16 are used, the encoding must be specified using an "encoding" attribute in the XML
declaration (see Section 4.4), even if there might be other protocol mechanisms for designating the encoding.

5.2. Language Declaration

Text encapsulated in XML can be represented in many different human languages, and it is often useful
to explicitly identify the language used to present the text. XML defines a special attribute in the "xml"
namespace, xml:lang, that can be used to specify the language used to represent data in an XML document. The
xml:lang attribute (which has to be explicitly declared for use within a DTD or XML Schema) and the values it
can assume are defined in section 2.12 of [8].

It is strongly recommended that protocols representing data in a human language mandate use of an xml:lang
attribute if the XML instance might be interpreted in language-dependent contexts.

5.3. Other Internationalization Considerations

There are standard mechanisms in the typography of some human languages that can be difficult to represent
using merely XML character string data types. For example, pronunciation clues can be provided using Ruby
annotation [39], and embedding controls (such as those described in section 3.4 of [34]) or an XHTML [40]
"dir" attribute can be used to note the proper display direction for bidirectional text.

There are a number of tricky issues that can arise when using extended character sets with XML document
formats. For example:

• There are different ways of representing characters consisting of combining characters, and

• There has been some debate about whether URIs should be represented using a restricted US-ASCII subset
or arbitrary Unicode (e.g. "URI character sequence" vs "original character sequence" in RFC 2396 [17]).

Some of these issues are discussed, with recommendations, in the W3C's "Character Model for the World Wide
Web" document [44].

It is strongly recommended that protocols representing data in a human language reuse existing mechanisms as
needed to ensure proper display of human-legible text.

Hollenbeck, et al. Best Current Practice [Page 15]

http://www.w3.org/TR/REC-xml#charencoding
http://www.w3.org/TR/REC-xml#sec-lang-tag
http://www.w3.org/TR/unicode-xml/#Deprecated

RFC 3470 XML Within IETF Protocols January 2003

6. IANA Considerations

This memo, per se, has no impact on the IANA. Section 4.17 notes some factors that might require IANA
action when protocols using XML are defined.

Hollenbeck, et al. Best Current Practice [Page 16]

RFC 3470 XML Within IETF Protocols January 2003

7. Security Considerations

Network protocols face many different kinds of threats, including unintended disclosure, modification, and
replay. Passive attacks, such as packet sniffing, allow an attacker to capture and view information intended for
someone else. Captured data can be modified and replayed to the original intended recipient, with the recipient
having no way to know that the information has been compromised, detect modifications, be assured of the
sender's identity, or to confirm which protocol instance is legitimate.

Several security service options for XML are available to help mitigate these risks. Though XML does not
include any built-in security services, other protocols and protocol layers provide services that can be used
to protect XML protocols. XML encryption [10] provides privacy services to prevent unintended disclosure.
Canonical XML [6] and XML digital signatures [7] provide integrity services to detect modification and
authentication services to confirm the identity of the data source. Other IETF security protocols (e.g., the
Transport Layer Security (TLS) protocol [2]) are also available to protect data and service endpoints as
appropriate. Given the lack of security services in XML, it is imperative that protocol specifications mandate
additional security services to counter common threats and attacks; the specific required services will depend
on the protocol's threat model.

Experience has shown that code that parses network traffic is often a "soft target" for blackhats. Accordingly,
implementers MUST take great care to ensure that their XML handling code is robust with respect to
malformed XML, buffer overruns, misuse of entity declarations, and so on.

XML mechanisms that follow external references (Section 4.14) may also expose an implementation to various
threats by causing the implementation to access external resources automatically. It is important to disallow
arbitrary access to such external references within XML data from untrusted sources. Many XML grammars
define constructs using URIs for external references; in such cases, the same precautions must be taken.

Hollenbeck, et al. Best Current Practice [Page 17]

RFC 3470 XML Within IETF Protocols January 2003

8. Acknowledgements

The authors would like to thank the following people who have provided significant contributions to the
development of this document:

Mark Baker, Tim Berners-Lee, Tim Bray, James Clark, Josh Cohen, John Cowan, Alan Crouch, Martin
Duerst, Jun Fujisawa, Christian Geuer-Pollmann, Yaron Goland, Graham Klyne, Dan Kohn, Rick Jeliffe, Chris
Lilley, Murata Makoto, Michael Mealling, Jean-Jacques Moreau, Andrew Newton, Julian Reschke, Jonathan
Rosenberg, Miles Sabin, Rich Salz, Peter Saint-Andre, Simon St Laurent, Margaret Wasserman, and Daniel
Veillard.

Hollenbeck, et al. Best Current Practice [Page 18]

RFC 3470 XML Within IETF Protocols January 2003

9. References

9.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[2] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A., and P. Kocher, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[3] Alvestrand, H., "IETF Policy on Character Sets and Languages", BCP 18, RFC 2277, January 1998.

[4] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998.

[5] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types", RFC 3023, January 2001.

[6] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March 2001.

[7] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup Language) XML-Signature Syntax and
Processing", RFC 3275, March 2002.

[8] Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler, "Extensible Markup Language (XML) 1.0 (2nd
ed)", W3C REC-xml, October 2000, <http://www.w3.org/TR/REC-xml>.

[9] Bray, T., Hollander, D., and A. Layman, "Namespaces in XML", W3C REC-xml-names, January 1999,
<http://www.w3.org/TR/REC-xml-names>.

[10] Imamura, T., Dillaway, B., Schaad, J., and E. Simon, "XML Encryption Syntax and Processing", W3C
REC-xmlenc-core, October 2001, <http://www.w3.org/TR/xmlenc-core/>.

9.2. Informative References

[11] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF URN Sub-namespace for Registered
Protocol Parameters", Internet-Draft draft-mealling-iana-urn-04 (work in progress), March 2003.

[12] Mealling, M., "The IETF XML Registry", Internet-Draft draft-mealling-iana-xmlns-registry-05 (work in
progress), June 2003.

[13] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol (SNMP)", STD
15, RFC 1157, May 1990.

[14] Srinivasan, R., "XDR: External Data Representation Standard", RFC 1832, August 1995.

[15] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies", RFC 2045, November 1996.

[16] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 2234, November
1997.

[17] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC
2396, August 1998.

[18] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 2434, October 1998.

[19] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629, June 1999.

[20] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO 10646", RFC 2781, February 2000.

[21] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001.

[22] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M., and D. Noveck, "NFS version
4 Protocol", RFC 3010, December 2000.

[23] Kennedy, H., "Binary Lexical Octet Ad-hoc Transport", RFC 3252, April 2002.

[24] Popp, N., Mealling, M., and M. Moseley, "Common Name Resolution Protocol (CNRP)", RFC 3367,
August 2002.

Hollenbeck, et al. Best Current Practice [Page 19]

https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2246.html
https://www.rfc-editor.org/rfc/rfc2277.html
https://www.rfc-editor.org/info/bcp18
https://www.rfc-editor.org/rfc/rfc2279.html
https://www.rfc-editor.org/rfc/rfc3023.html
https://www.rfc-editor.org/rfc/rfc3076.html
https://www.rfc-editor.org/rfc/rfc3275.html
https://www.rfc-editor.org/rfc/rfc3275.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlenc-core/
https://datatracker.ietf.org/doc/html/draft-mealling-iana-urn-04
https://datatracker.ietf.org/doc/html/draft-mealling-iana-urn-04
https://datatracker.ietf.org/doc/draft-mealling-iana-urn
https://datatracker.ietf.org/doc/html/draft-mealling-iana-xmlns-registry-05
https://datatracker.ietf.org/doc/draft-mealling-iana-xmlns-registry
https://datatracker.ietf.org/doc/draft-mealling-iana-xmlns-registry
https://www.rfc-editor.org/rfc/rfc1157.html
https://www.rfc-editor.org/info/std15
https://www.rfc-editor.org/info/std15
https://www.rfc-editor.org/rfc/rfc1832.html
https://www.rfc-editor.org/rfc/rfc2045.html
https://www.rfc-editor.org/rfc/rfc2045.html
https://www.rfc-editor.org/rfc/rfc2234.html
https://www.rfc-editor.org/rfc/rfc2396.html
https://www.rfc-editor.org/rfc/rfc2434.html
https://www.rfc-editor.org/info/bcp26
https://www.rfc-editor.org/rfc/rfc2629.html
https://www.rfc-editor.org/rfc/rfc2781.html
https://www.rfc-editor.org/rfc/rfc2821.html
https://www.rfc-editor.org/rfc/rfc3010.html
https://www.rfc-editor.org/rfc/rfc3010.html
https://www.rfc-editor.org/rfc/rfc3252.html
https://www.rfc-editor.org/rfc/rfc3367.html

RFC 3470 XML Within IETF Protocols January 2003

[25] Backus, J., "The syntax and semantics of the proposed international algebraic language of the Zurich ACM-
GAMM conference", June 1959.

[26] American National Standards Institute, "Code Extension Techniques for Use with the 7-bit Coded Character
Set of American National Standard Code (ASCII) for Information Interchange", ANSI X3.41, FIPS PUB 35,
1974.

[27] American National Standards Institute, "Information Retrieval: Application Service Definition and Protocol
Specification", ANSI Z39.50, ISO Standard 23950, 1995.

[28] International Organization for Standardization, "Information Processing Systems - Open Systems
Interconnection - Specification of Abstract Syntax Notation One (ASN.1)", ISO Standard 8824, December
1990.

[29] International Organization for Standardization, "Information Processing Systems - Open Systems
Interconnection - Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)", ISO
Standard 8825, December 1990.

[30] International Organization for Standardization, "Information processing - Text and office systems - Standard
Generalized Markup Language (SGML)", ISO Standard 8879, 1988.

[31] International Organization for Standardization, "Information Technology - Universal Multiple-octet coded
Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane", ISO Standard 10646-1, May
1993.

[32] International Organization for Standardization, "DSDL Part 0 - Overview", December 2001, <http://www.jtc
1.org/FTP/Public/SC34/DOCREG/0275.htm>.

[33] Unicode Consortium, "The Unicode Standard, as it may from time to time be revised or amended", March
2002, <http://www.unicode.org/unicode/standard/standard.html>.

[34] Duerst, M. and A. Freytag, "Unicode in XML and other Markup Languages", February 2002, <http://www.
w3.org/TR/unicode-xml/>.

[35] Bray, T., Paoli, J., and C. Sperberg-McQueen, "Extensible Markup Language (XML) 1.0", W3C REC-
xml-1998, February 1998, <http://www.w3.org/TR/1998/REC-xml-19980210/>.

[36] Marsh, J., "XML Base", W3C REC-xmlbase, June 2001, <http://www.w3.org/TR/xmlbase/>.

[37] Cowan, J. and R. Tobin, "XML Information Set", W3C REC-infoset, October 2001, <http://www.w3.org/T
R/xml-infoset/>.

[38] Lassila, O. and R. Swick, "Resource Description Framework (RDF) Model and Syntax Specification", W3C
REC-rdf-syntax, February 1999, <http://www.w3.org/TR/REC-rdf-syntax>.

[39] Suignard, M., Ishikawa, M., Duerst, M., and T. Texin, "Ruby Annotation", W3C REC-RUBY, May 2001,
<http://www.w3.org/TR/ruby/>.

[40] Pemberton, S., "XHTML 1.0: The Extensible HyperText Markup Language", W3C REC-XHTML, January
2000, <http://www.w3.org/TR/xhtml1/>.

[41] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, "XML Schema Part 1: Structures", W3C REC-
xmlschema-1, May 2001, <http://www.w3.org/TR/xmlschema-1/>.

[42] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes", W3C REC-xmlschema-2, May 2001, <http://
www.w3.org/TR/xmlschema-2/>.

[43] Clark, J., "XSL Transformations (XSLT) Version 1.0", W3C REC-xslt, November 1999, <http://www.w3.o
rg/TR/xslt>.

[44] Duerst, M., Yergeau, F., Ishida, R., Wolf, M., Freytag, A., and T. Texin, "Character Model for the World
Wide Web 1.0", April 2002, <http://www.w3.org/TR/charmod/>.

[45] Gudgin, M., Hadley, M., Moreau, JJ., and H. Nielsen, "SOAP Version 1.2 Part 1: Messaging Framework",
June 2002, <http://www.w3.org/TR/soap12-part1/>.

Hollenbeck, et al. Best Current Practice [Page 20]

http://www.jtc1.org/FTP/Public/SC34/DOCREG/0275.htm
http://www.unicode.org/unicode/standard/standard.html
http://www.w3.org/TR/unicode-xml/
http://www.w3.org/TR/1998/REC-xml-19980210/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/ruby/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/soap12-part1/

RFC 3470 XML Within IETF Protocols January 2003

[46] Gudgin, M., Hadley, M., Moreau, JJ., and H. Nielsen, "SOAP Version 1.2 Part 2: Adjuncts", June 2002,
<http://www.w3.org/TR/soap12-part2/>.

[47] W3C Communications Team, "XML in 10 points", November 2001, <http://www.w3.org/XML/1999/XML
-in-10-points>.

[48] OASIS Technical Committee: RELAX NG, "RELAX NG Specification", December 2001, <http://www.oasi
s-open.org/committees/relax-ng/spec-20011203.html>.

[49] Jelliffe, R., "The Schematron", November 2001, <http://www.ascc.net/xml/schematron/>.

Hollenbeck, et al. Best Current Practice [Page 21]

http://www.w3.org/TR/soap12-part2/
http://www.w3.org/XML/1999/XML-in-10-points
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.ascc.net/xml/schematron/

Authors' Addresses

Scott Hollenbeck
VeriSign, Inc.
21345 Ridgetop Circle
Dulles, VA 20166-6503
US
Phone: +1 703 948 3257
EMail: shollenbeck@verisign.com

Marshall T. Rose
Dover Beach Consulting, Inc.
POB 255268
Sacramento, CA 95865-5268
US
Phone: +1 916 483 8878
EMail: mrose@dbc.mtview.ca.us

Larry Masinter
Adobe Systems Incorporated
Mail Stop W14
345 Park Ave.
San Jose, CA 95110
US
Phone: +1 408 536 3024
EMail: LMM@acm.org
URI: http://larry.masinter.net

Full Copyright Statement

Copyright © The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this document itself may not be modified
in any way, such as by removing the copyright notice or references to the Internet Society or other Internet
organizations, except as needed for the purpose of developing Internet standards in which case the procedures
for copyrights defined in the Internet Standards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its
successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in

tel:+17039483257
mailto:shollenbeck@verisign.com
tel:+19164838878
mailto:mrose@dbc.mtview.ca.us
tel:+14085363024
mailto:LMM@acm.org
http://larry.masinter.net

RFC 3470 XML Within IETF Protocols January 2003

standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt made
to obtain a general license or permission for the use of such proprietary rights by implementors or users of this
specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this standard. Please
address the information to the IETF Executive Director.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.

Hollenbeck, et al. Best Current Practice [Page 23]

	Status of this Memo
	Copyright Notice
	Abstract
	Conventions Used In This Document
	Table of Contents
	1 Introduction and Overview
	1.1 Intended Audience
	1.2 Scope
	1.3 XML Evolution
	1.4 XML Users, Support Groups, and Additional Information

	2 XML Selection Considerations
	3 XML Alternatives
	4 XML Use Considerations and Recommendations
	4.1 XML Syntax and Well-Formedness
	4.2 XML Information Set
	4.3 Syntactic Restrictions
	4.4 XML Declarations
	4.5 XML Processing Instructions
	4.6 XML Comments
	4.7 Validity and Extensibility
	4.8 Semantics as Well as Syntax
	4.9 Namespaces
	4.9.1 Namespaces and Attributes

	4.10 Element and Attribute Design Considerations
	4.11 Binary Data and Text with Control Characters
	4.12 Incremental Processing
	4.13 Entity Declarations and Entity References
	4.14 External References
	4.15 URI Processing
	4.16 White Space
	4.17 Interaction with the IANA

	5 Internationalization Considerations
	5.1 Character Sets and Encodings
	5.2 Language Declaration
	5.3 Other Internationalization Considerations

	6 IANA Considerations
	7 Security Considerations
	8 Acknowledgements
	9 References
	9.1 Normative References
	9.2 Informative References

	Authors' Addresses
	Intellectual Property and Copyright Statements

