Internet Engineering Task Force (IETF) G. Clemm
Request for Comments. 5842 1BM
Category: Experimental J. Crawford
ISSN: 2070-1721 IBM Research
J. Reschke, Editor

greenbytes

J. Whitehead

U.C. Santa Cruz

April 2010

Binding Extensionsto Web Distributed
Authoring and Versioning (WebDAYV)

Abstract

This specification defines bindings, and the BIND method for creating multiple bindings to the same resource.
Creating a new binding to aresource causes at least one new URI to be mapped to that resource. Servers are
reguired to ensure the integrity of any bindings that they allow to be created.

Status of ThisMemo

This document is not an Internet Standards Track specification; it is published for examination, experimental
implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This document is a product of the
Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received
public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5
741",

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at http://www.rfc-editor.org/info/rfc5842°,

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review

these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.eof the Trust Lega Provisions and are provided without warranty as described in the Simplified BSD
License.

1 https://www.rfc-editor.org/rfc/rfc5741.html#section-2
2 http://www.rfc-editor.org/info/rfc5842
3 http://trustee.ietf.org/license-info

#rfc.authors.1
#rfc.authors.1
#rfc.authors.2
#rfc.authors.2
#rfc.authors.3
#rfc.authors.3
#rfc.authors.4
#rfc.authors.4
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
http://www.rfc-editor.org/info/rfc5842
http://trustee.ietf.org/license-info

RFC 5842 Binding Extensions to WebDAV April 2010

This document may contain material from IETF Documents or |ETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the copyright in some of this material may

not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards
Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials,
this document may not be modified outside the IETF Standards Process, and derivative works of it may not be
created outside the IETF Standards Process, except to format it for publication as an RFC or to trandate it into
languages other than English.

Clemm, et al. Experimental [Page 2]

RFC 5842 Binding Extensions to WebDAV April 2010

Table of Contents

IO 01 oo U T o OSSPSR 5
S 1= 11411 07][|2 OSSPSR 5
1.2. Method Preconditions and POSLCONMITIONS.........cc.eeeiuriiriireriereeiee ettt s e e e e e ne e ene e 6
2. OVENVIEW OF BINGINGS.. . eiiiiiieieieeee ettt ettt sttt et h s b e bt sbe s b e s bese et e bese e e e n e e e e seeaeebeeaeebesbesbesaesbenbeseens 7
2250 T = 1T 0T [1 1o S (T @ = 1 o =SSP 7
2250 St O = Y1 oo oo oS 7
2.2, URI Mappings Created by a NeW BindiNg.........ccoiiiiiiieees e e 8
2.3, COPY NG BINGINGS......ctiueriiiertiertiistisietesieiess ettt se e s s s b s se st e st s b e st st et s b e e e b e e e b e e e bt s e bt s b e st be st sbe e nbens 8
23.1. Example: COPY with "Depth: infinity" in Presence of Bind LOOPS........c.ccoverrererinnineieneesie e 10
2.3.2. Example: COPY Updating Multiple BinAiNgS........c.eoereiriiiniiirieinieenenesie sttt 11
2.3.3. Example: COPY with "Depth: infinity" with Multiple Bindings to a Leaf Resource............ccccvevrenennne. 12
2.4, DELETE @0 BINGINGS......ititiiitirietinietisietiseeie sttt ss s es s es s se e s b s s ss e sb e e es e s eb e s es e s enennenennenes 13
25, MOVE @NQ BINAINGS.....iitiitiitiiiieieeeee ettt sttt s se e e e ae st e aesheeb e s bt saeeb et seees e b e e e e eneeneeneesesbenaeans 13
251 EXaMPlE SIMPIE MOV E..... .ttt b et s ae b bbb et s e e e e e e e et ebeebesaesbesbesbeseens 14
252, Example: MOVE Request Causing 8 Bind LOOP........cccueerreririnenesiese sttt sae s sre e 14
2.6. PROPFIND @n0 BiNAINGS......ctrurueueieririeieuinisisieseesessssesesesssse st sessesesessssssssesessssesesessssesessssssesessssssssesessssssesensssns 15
2.7. Determining Whether Two Bindings Are to the Same RESOUICE.........c.cccvveieveniese e 15
2.8. Discovering the BindiNgS t0 @ RESOUICE.........curueirieirieirieirieesies ettt 16
R 0] o= L= OSSO RO PPTOPTRTPRSTPTRPRN 17
3.1, DAV:IrESOUICE-IT PIOPEITY......ecuiiirieitiriestteteste sttt st sttt e et se it st sbesbe s et st e besee se e b e bene e e esseseeneebesbesaesbesbesbeseens 17
I I B YNV A o= = g s Bl o o] 01 1SRRI 17
3.21. Example for DAV :parent-SEt PrOPEITY......cccceiieieierieieeesesestes e saesessaeae e eessessessestestesaeste e sresaenseaesessssennes 17
T = N R 1Y = 1 oo ST S P 19
A1, EXMPIE BIND.....ocuiiiieiiiiiteestest ettt bbbt bt b et b e bttt b et bbb 20
5. UNBIND MEINOM. .. .ottt et st s bbbt e bbb se bk e et bt e et sb bt e st se e et b 21
5.1, EXAMPIE UNBIND. ..ottt ettt bbbt b bt st bbbt e b b et e et b e es 21
6. REBIND MEINOU......coiiciiiieieereireres st r et s et n et ne e r e 23
6.1, EXAMPIE REBIND......ccoiiititiiiirieteie sttt ettt ettt e et e st se st e s et s et b e re e s e e b e b et seebebe e e s beseneneen 24
6.2. Example: REBIND in Presence of Locks and Bind LOOPS.......cccoteirereriirereseenienie e e see e s 25
7. AdItioNal SEAIUS COUES........couieiriietiieiireeter et b et e et b b e b e b e st bt r et b r e b e 27
A8 T 0 B AN [= |V L= oo = O 27
7.1.1. Example: PROPFIND by Bind-AWare ClIENt.........cccvieeierieieeeeeeeesesestese e sses e sassseeee e ssessesnesseseeses 27
7.1.2. Example: PROPFIND by NON-Bind-AWare ClHENt........ccccovevieierieeeise s stesie e se e sse s sre s 28
7.2, 508 LOOP DELECLEA.......cuieetireeieieeiereeie ettt sttt sttt e et et s b et bbbt b et b e se e b e ne bt st b b be et b 29
I OF= Vo T= o 11 11 Y TS w0 = 30
8.1, OPTIONS MEINOU......cecuiirerieteiristeteee sttt sttt sttt b st b b st s e b b et e s b b e bt e e b b et se e bt et e bt e be e et b s 30
8.2, 'DAV' REQUESE HEAOEN.......coeuiiiieieiiriieietee ettt sttt b ket b b n et 30

Clemm, et al. Experimental [Page 3]

RFC 5842 Binding Extensions to WebDAV April 2010

9. Relationship t0 LOCKING iN WEDDAV ...ttt e e ettt sb b sae b e 31
9.1. Example: Locking and MUltiple BinNAiNGS........cceeerierierieieieeeeisesesteseses e e steseesesseseesesessessessessessessessessesenns 31
10. Relationship to WebDAV AcCesS CONLr Ol ProtOCOL.........cciiiriiree ettt 33
11. Relationship to Versioning EXtensions 10 WEDDAV ...ttt s sa 34
12, SECUNItY CONSIAEN BLIONS......cceiuiiiiiiesieiteestese et et e et st e te e testesre st e e teseesseseesseseeseeseeseebesteseesbetestessensansennensenenses 36
L12.1. PrIVBCY CONCEINS....cueitirietirietereettstete sttt st s tesesbeesbe e e b s ebesae bt se e bt se e st s b eae b ea e eb e st eb e s e b e s eb e e e bt nbeb e b e bt b enenbene st enenbenes 36
12,2, BINO LOOPS. . tieeteietereetesteit ettt sttt sttt st e ebese bt s e e bt s e e st b e st e b e st e b et e b e e e b e se e b e se e b e se e b e neeb e nb e bt s be st nb et sbe st e be e ebens 36
12.3. Bindings and Deni@l Of SEIVICE........cociieiirieiiieiesieest ettt sttt b et b et b e bt b et eb e e b neene e 36
12.4. Private Locations May Be REVEEIE..........ccooiiiiiiiiiiee ettt et 36
125. DAV:parent-set and DeENial OF SEIVICE.......cciiiiieieiceieecee et st e e e resresaesrestesresaeas 36
13. Internationalization CONSIAEr ALIONS........cuiiiriirieirtere sttt sttt se st se et seebeseebeseebeseeneseeneas 37
R N NN 0] £ Lo = = 4 o 1T 38
BT N o g L0 Y = [1= 0=) P 39
L (= = 0 To = OSSO 40
16.1. NOIMELVE REFEIEINCES......cuiiiieieiiie sttt sttt st e st et e e e e e e s e e seeseeseebessesaesbesbeseeseeteneessennan 40
16.2. INfOrMELIVE REFEIBNCES.o ti ettt sttt ettt et e s e e st e aeeheseesaeseeebeseeseenseeeseeneeneeneeneanens 40
g0 [PO OO STRTS 41

AULNOTS AGUNESSES......cvieiitieeteiete sttt b bbbt b e e Rt b e b e st b et b et e R e bRt b e st b e st s b et e b et e be e be e e be st e 43

Clemm, et al. Experimental [Page 4]

RFC 5842 Binding Extensions to WebDAV April 2010

1. Introduction

This specification extends the WebDAYV Distributed Authoring Protocol ([RFC4918]) to enable clients to
create new access paths to existing resources. This capability is useful for several reasons:

URIs of WebDAV -compliant resources are hierarchical and correspond to a hierarchy of collectionsin
resource space. The WebDAYV Distributed Authoring Protocol makes it possible to organize these resources
into hierarchies, placing them into groupings, known as collections, which are more easily browsed and
manipulated than a single flat collection. However, hierarchies require categorization decisions that locate
resources at a single location in the hierarchy, a drawback when a resource has multiple valid categories. For
example, in ahierarchy of vehicle descriptions containing collections for cars and boats, a description of a
combination car/boat vehicle could belong in either collection. Ideally, the description should be accessible
from both. Allowing clients to create new URIs that access the existing resource | ets them put that resource into
multiple collections.

Hierarchies also make resource sharing more difficult, since resources that have utility across many collections
are still forced into asingle collection. For example, the mathematics department at one university might create
acollection of information on fractals that contains bindings to some local resources but also provides access
to some resources at other universities. For many reasons, it may be undesirable to make physical copies of

the shared resources on the local server, for example, to conserve disk space, to respect copyright constraints,
or to make any changes in the shared resources visible automatically. Being able to create new access paths to
existing resources in other collections or even on other serversis useful for this sort of case.

The BIND method, defined here, provides a mechanism for alowing clients to create alternative access paths to
existing WebDAYV resources. HTTP [RFC2616] and WebDAYV [RFCA4918] methods are able to work because
there are mappings between URIs and resources. A method is addressed to a URI, and the server follows the
mapping from that URI to aresource, applying the method to that resource. Multiple URIs may be mapped to
the same resource, but until now, there has been no way for clientsto create additional URIs mapped to existing
resources.

BIND lets clients associate a new URI with an existing WebDAV resource, and this URI can then be used
to submit requests to the resource. Since URIs of WebDAV resources are hierarchical, and correspond to a
hierarchy of collections in resource space, the BIND method also has the effect of adding the resource to a
collection. As new URIs are associated with the resource, it appears in additional collections.

A BIND request does not create a new resource, but simply makes a new URI for submitting requests to an
existing resource available. The new URI is indistinguishable from any other URI when submitting a request
to aresource. Only one round trip is needed to submit arequest to the intended target. Servers are required
to enforce the integrity of the relationships between the new URIs and the resources associated with them.
Consequently, it may be very costly for serversto support BIND requests that cross server boundaries.

This specification is organized as follows. Section 1.1 defines terminology used in the rest of the specification,
while Section 2 overviews bindings. Section 3 defines the new properties needed to support multiple bindings
to the same resource. Section 4 specifies the BIND method, used to create multiple bindings to the same
resource. Section 5 specifies the UNBIND method, used to remove a binding to a resource. Section 6 specifies
the REBIND method, used to move a binding to another collection.

1.1. Terminology

The terminology used here follows and extends that in the WebDAV Distributed Authoring Protocol
specification [RFC4918].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

This document uses XML DTD fragments ([XML]) as anotational convention, using the rules defined in
Section 17 of [RFC4918].

Clemm, et al. Experimental [Page 5]

https://www.rfc-editor.org/rfc/rfc4918.html#section-17

RFC 5842 Binding Extensions to WebDAV April 2010

URI Mapping
A relation between an absolute URI and aresource. For an absolute URI U and the resource it identifies R,
the URI mapping can be thought of as (U => R). Since aresource can represent items that are not network
retrievable as well asthose that are, it is possible for aresource to have zero, one, or many URI mappings.
Mapping aresource to an "http"-scheme URI makes it possible to submit HTTP requests to the resource
using the URI.
Path Segment
Informally, the characters found between slashes (/") in a URI. Formally, as defined in Section 3.3 of
[RFC3986].
Binding
A relation between a single path segment (in a collection) and aresource. A binding is part of the state
of acollection. If two different collections contain a binding between the same path segment and the
same resource, these are two distinct bindings. So for a collection C, a path segment S, and a resource
R, the binding can be thought of as C:(S -> R). Bindings create URI mappings, and hence allow requests
to be sent to a single resource from multiple locations in a URI namespace. For example, given a
collection C (accessible through the URI http://www.example.com/CollX), a path segment S (equal to
"foo.html"), and aresource R, then creating the binding C: (S -> R) makes it possible to use the URI http://
www.example.com/Col I X/foo.html to access R.
Collection
A resource that contains, as part of its state, a set of bindings that identify internal member resources.
Internal Member URI
The URI that identifies an internal member of a collection and that consists of the URI for the collection,
followed by a slash character ('/"), followed by the path segment of the binding for that internal member.
Binding Integrity
The property of abinding that says that:
¢ thebinding continues to exist, and
< theidentity of the resource identified by that binding does not change,

unless an explicit request is executed that is defined to delete that binding (examples of requests that delete
abinding are DELETE, MOVE, and -- defined later on -- UNBIND and REBIND).

1.2. Method Preconditions and Postconditions
See Section 16 of [RFC4918] for the definitions of "precondition” and "postcondition”.

Clemm, et al. Experimental [Page 6]

https://www.rfc-editor.org/rfc/rfc3986.html#section-3.3
https://www.rfc-editor.org/rfc/rfc4918.html#section-16

RFC 5842 Binding Extensions to WebDAV April 2010

2. Overview of Bindings

Bindings are part of the state of a collection. They define the internal members of the collection and the names
of those internal members.

Bindings are added and removed by avariety of existing HT TP methods. A method that creates a new resource,
such as PUT, COPY, and MKCOL, adds a hinding. A method that deletes a resource, such as DELETE,
removes abinding. A method that moves a resource (e.g., MOVE) both adds a binding (in the destination
collection) and removes a binding (in the source collection). The BIND method introduced here provides
amechanism for adding a second binding to an existing resource. There is no difference between an initial
binding added by PUT, COPY, or MKCOL and additional bindings added with BIND.

It would be very undesirable if one binding could be destroyed as a side effect of operating on the resource
through a different binding. In particular, the removal of one binding to aresource (e.g., withaDELETE or a
MOVE) MUST NOT disrupt another binding to that resource, e.g., by turning that binding into a dangling path
segment. The server MUST NOT reclaim system resources after removing one binding, while other bindings
to the resource remain. In other words, the server MUST maintain the integrity of abinding. It is permissible,
however, for future method definitions (e.g., aDESTROY method) to have semantics that explicitly remove all
bindings and/or immediately reclaim system resources.

Note: the collection model described herein is not compatible with systemsin which resources inherit
properties based solely on the access path, as the ability to create additional bindings will cause asingle
resource to appear as member of severa different collections at the same time.

2.1. Bindingsto Collections

Creating a new binding to a collection makes each resource associated with a binding in that collection
accessible viaanew URI, and thus creates new URI mappings to those resources but no new bindings.

For example, suppose a new binding CollY is created for collection C1 in the figure below. It immediately
becomes possible to access resource R1 using the URI /Coll Y /x.gif and to access resource R2 using the URI /
CollY/y.jpg, but no new bindings for these child resources were created. Thisis because bindings are part

of the state of a collection, and they associate a URI that is relative to that collection with its target resource.
No change to the bindingsin Collection C1 is needed to make its children accessible using /CollY /x.gif and /
CollY/y.jpg.

ffe-scccoccococococoocsoocoooe +
| Root Collection |
| bindings: |
| CollX CollY |
ffe-scccoccococococoocsoocoooe +
| /
| /
| /
dfmcococsoocoocsoocoo +
| Collection Cl1 |
| bi ndi ngs: |
| x.gif y-ipg |
dfmcococsoocoocsoocoo +
| \
| \
| \
dfmcococ=oococoo + dfmcococ=oococoo +
| Resource Rl | | Resource R2 |
dfmcococ=oococoo + dfmcococ=oococoo +

Clemm, et al. Experimental [Page 7]

RFC 5842 Binding Extensions to WebDAV April 2010

2.1.1. Bind Loops

Bindings to collections can result in loops ("cycles'), which servers MUST detect when processing "Depth:
infinity" requests. It is sometimes possible to complete an operation in spite of the presence of aloop. For
instance, a PROPFIND can still succeed if the server uses the new status code 208 (Already Reported) defined
in Section 7.1.

However, the 508 (L oop Detected) status codeis defined in Section 7.2 for use in contexts where an operation
is terminated because aloop was encountered.

Support for loopsis OPTIONAL: servers MAY regject requests that would lead to the creation of a bind loop
(see DAV :cycle-allowed precondition defined in Section 4).

2.2. URI Mappings Created by a New Binding

Suppose a binding from "Binding-Name" to resource R isto be added to a collection, C. if C-MAP isthe set of
URIsthat were mapped to C before the BIND request, then for each URI "C-URI" in C-MAP, the URI "C-URI/
Binding-Name" is mapped to resource R following the BIND reguest.

For example, if abinding from "foo.html" to R is added to a collection C, and if the following URIs are
mapped to C:

http://ww. exanpl e. coml A/ 1/
http://exanpl e. com A/ one/

then the following new mappingsto R are introduced:

http://ww. exanpl e. coml A/ 1/ f 0o. ht m
http://exanpl e. coml A/ one/ f 0o. ht ni

Notethat if R isacollection, additional URI mappings are created to the descendents of R. note that if a
binding ismadein collection C to Citself (or to aparent of C), an infinite number of mappings are introduced.

For example, if abinding from "myself" to C is then added to C, the following infinite number of additional
mappings to C are introduced:

htt p: // ww. exanpl e. conf A/ 1/ nysel f
htt p: // ww. exanpl e. conf A/ 1/ nysel f/ nysel f

and the following infinite number of additional mappings to R are introduced:

http://ww. exanpl e. conf A/ 1/ nysel f/foo. htm
http://ww. exanpl e. conf A/ 1/ nysel f/ nysel f/foo. ht n

2.3. COPY and Bindings

Asdefined in Section 9.8 of [RFC4918], COPY causes the resource identified by the Request-URI to be
duplicated and makes the new resource accessible using the URI specified in the Destination header. Upon
successful completion of a COPY, anew binding is created between the last path segment of the Destination
header and the destination resource. The new binding is added to its parent collection, identified by the
Destination header minusits final segment.

Clemm, et al. Experimental [Page §]

https://www.rfc-editor.org/rfc/rfc4918.html#section-9.8

RFC 5842 Binding Extensions to WebDAV April 2010

The following figure shows an example: suppose that a COPY isissued to URI-3 for resource R (which isalso
mapped to URI-1 and URI-2), with the Destination header set to URI-X. After successful completion of the
COPY operation, resource R is duplicated to create resource R', and a new binding has been created that creates
at least the URI mapping between URI-X and the new resource (although other URI mappings may also have

been created).
URI -1 URI - 2 URI - 3 URI - X

I I I I

| | | <---- URI Mappings ----> |

I I I I
e + e +
| Resource R | | Resource R |
e + e +

It might be thought that a COPY request with "Depth: 0" on a collection would duplicate its bindings, since
bindings are part of the collection's state. Thisis not the case, however. The definition of Depth in [RFC4918]
makes it clear that a"Depth: 0" request does not apply to a collection's members. Consequently, a COPY with
"Depth: 0" does not duplicate the bindings contained by the collection.

If a COPY request causes an existing resource to be updated, the bindings to that resource MUST be unaffected
by the COPY request. Using the preceding example, suppose that a COPY request isissued to URI-X for
resource R', with the Destination header set to URI-2. The content and dead properties of resource R would

be updated to be a copy of those of resource R', but the mappings from URI-1, URI-2, and URI-3 to resource

R remain unaffected. If, because of multiple bindings to aresource, more than one source resource updates a
single destination resource, the order of the updatesis server defined (see Section 2.3.2 for an example).

If a COPY request would cause a new resource to be created as a copy of an existing resource, and that COPY
request has already created a copy of that existing resource, the COPY request instead creates another binding
to the previous copy, instead of creating a new resource (see Section 2.3.3 for an example).

Clemm, et al. Experimental [Page 9]

RFC 5842 Binding Extensions to WebDAV April 2010

2.3.1. Example: COPY with " Depth: infinity" in Presence of Bind L oops

As an example of how COPY with "Depth: infinity" would work in the presence of bindings, consider the
following collection:

o +
| Root Collection |
| bindings: |
| CollX |
o +
I
I
dm o +
| Collection Cl | <------- +
| bindi ngs: | |
| x.gif Col | Y | |
B + |
| \ (creates | oop) |
I \ I
Fom e - - + o + |
| Resource R1 | | Collection C2 | |
e L + | bindings: | |
| y.gif CollZ | |
o + |
I I I
| L +
I
e +
| Resource R2 |
e +

Clemm, et al. Experimental [Page 10]

RFC 5842 Binding Extensions to WebDAV April 2010

If a COPY request with "Depth: infinity" is submitted to /CollX, with a destination of /CollA, the outcome of
the copy operation is that a copy of the tree is replicated to the target /CollA:

B +
| Root Collection |
| bindings: |
| CollX Col | A |
B +
I I
| E T T +
I I
B TP + |
| Collection C1 [<----mmiieeee - + |
| bi ndi ngs: | | |
| x.gif CollY | |]
B TP + | |
| \ (creates loop) | |
I \ (I
B + o e e + | |
| Resource R1 | | Collection C2 | | |
LR + | bindi ngs: | |]
| y.gif Col | Z | |]
o e e + | |
I I (I
| fmaconas +
I I
B + |
| Resource R2 | |
B + |
I
L +
L +
| Collection C3 [<---cmmieeeei - +
| bindi ngs: | |
| x.gif CollY | |
o m e e e e e - + |
| \ (creates | oop) |
I \ I
B + o + |
| Resource R3 | | Collection C4 | |
L + | bi ndi ngs: | |
| y.gif Col | Z | |
o + |
I I I
| Hommm - - +
I
T +
| Resource R4 |
T +

Note that the same would apply for more complex loops.

Clemm, et al. Experimental [Page 11]

RFC 5842 Binding Extensions to WebDAV April 2010

2.3.2. Example: COPY Updating Multiple Bindings
Given the following collection hierarchy:

Fom e eaaaaa +
| Root Collection |
| bindings: |
| CollX Col 'Y |
Fom e eaaaaa +
/ \
/ \
/ \
e e e eeeeeeaaaaa + o eeeaaaan +
Col	ection Cl1		Collection C2
bi ndi ngs:		bindi ngs:	
X.gif y.gif		x.gif y.gif	
e e e eeeeeeaaaaa + o eeeaaaan +			
I I I I			
I I I I			
Fommemeee e + eeeeeeeeaaaas + Fommmeea e +			
Resource R1		Resource R2	
Fommemeee e + eeeeeeeeaaaas + Fommmeea e +

A COPY of /CollX with "Depth: infinity" to /CollY will not result in a changed hierarchy, and Resource R3
will be updated with the content of either Resource R1 or Resource R2.

2.3.3. Example: COPY with " Depth: infinity" with Multiple Bindingsto a L eaf Resour ce
Given the following collection hierarchy:

| Root Collection |
| bindings: |
| CollX |

| Collection CL |
| bindi ngs: |
| x.gif y.gif |

Clemm, et al. Experimental [Page 12]

RFC 5842 Binding Extensions to WebDAV April 2010

A COPY of /CollX with "Depth: infinity" to /CollY resultsin the following collection hierarchy:

o +
| Root Collection |
| bindings: |
| CollX Col 1Y |
o +
| \
| \
| \
T E R +
Collection CL		Collection C2
bindi ngs:		bindings:
x.gif y.gif		x.gif y.gif
T E R +		
I I I I		
I I I I		
T + o +		
Resource R1		Resource R2
T + o +

2.4. DELETE and Bindings

When there are multiple bindings to aresource, a DELETE applied to that resource MUST NOT remove any
bindings to that resource other than the one identified by the Request-URI. For example, suppose the collection
identified by the URI "/a" has a binding named "x" to aresource R, and another collection identified by "/b"
has a binding named "y" to the same resource R. aDELETE applied to "/a/x" removes the binding named "x"
from "/a" but MUST NOT remove the binding named "y" from "/b" (i.e., after the DELETE, "/y/b" continuesto
identify the resource R).

When DELETE is applied to a collection, it MUST NOT modify the membership of any other collection that
isnot itself a member of the collection being deleted. For example, if both "/&/.../x" and "/b/.../y" identify the
same collection, C, then applying DELETE to "/a" must not delete an internal member from C or from any
other collection that isa member of C, because that would modify the membership of "/b".

If acollection supports the UNBIND method (see Section 5), aDELETE of an internal member of a collection
MAY beimplemented as an UNBIND request. In this case, applying DELETE to a Request-URI has the effect
of removing the binding identified by the final segment of the Request-URI from the collection identified

by the Request-URI minusits final segment. Although [RFC4918] allows a DELETE to be a non-atomic
operation, when the DELETE operation isimplemented as an UNBIND, the operation is atomic. In particular,
aDELETE on ahierarchy of resources is simply the removal of a binding to the collection identified by the
Request-URI.

2.5. MOVE and Bindings

When MOVE is applied to aresource, the other bindings to that resource MUST be unaffected; and if the
resource being moved is a collection, the bindings to any members of that collection MUST be unaffected.
Also, if MOVE is used with Overwrite: T to delete an existing resource, the constraints specified for DELETE
apply.

If the destination collection of a MOVE request supports the REBIND method (see Section 6), aMOVE of
aresource into that collection MAY be implemented as a REBIND request. Although [RFC4918] allows a
MOVE to be a non-atomic operation, when the MOV E operation is implemented as a REBIND, the operation
isatomic. In particular, applying aMOVE to a Request-URI and a Destination URI has the effect of removing
abinding to aresource (at the Request-URI) and creating a new binding to that resource (at the Destination
URI). Even when the Request-URI identifies a collection, the MOV E operation involves only removing one
binding to that collection and adding another.

Clemm, et al. Experimental [Page 13]

RFC 5842 Binding Extensions to WebDAV April 2010

2.5.1. Example: Simple MOVE

As an example, suppose that aMOVE isissued to URI-3 for resource R below (which is also mapped to
URI-1 and URI-2), with the Destination header set to URI-X. After successful completion of the MOVE
operation, anew binding has been created that creates the URI mapping between URI-X and resource R.
binding corresponding to the final segment of URI-3 has been removed, which also causes the URI mapping
between URI-3 and R to be removed. If resource R were a collection, old URI-3-based mappings to members
of R would have been removed, and new URI-X-based mappings to members of R would have been created.

>> Before Request:

URI-1 URI-2 URI-3
I I |

| | <---- URl Mappi ngs
| | |

ffecccemocococooomocoooc +

| Resource R |

ffecccemocococooomocoooc +

>> After Request:

URI-1 URI-2 URI - X
I I I

| | <---- URl Mappings
I I I

e +

| Resource R |

e +

2.5.2. Examplee MOVE Reguest Causing a Bind L oop

Note that in the presence of collection bindings, a MOVE request can cause the creation of a bind loop.

Consider the top-level collections C1 and C2 with URIs"/CollW/" and "/ColIX/". C1 aso contains an
additional binding named "CollY" to C2:

roocsmocococooooooo +
| Root Collection |
| bi ndi ngs: |
| CollW Col I X |
roocsmocococooooooo +

I I
I I
ocococooocooooacoo + |

| Collection C1 | |

| bindings: | |

| CollY | |

ocococooocooooacoo + |

I I
I I
roocsmocococooooooo +

In this case, the MOVE request below would cause a bind |oop:

Clemm, et al. Experimental [Page 14]

RFC 5842 Binding Extensions to WebDAV April 2010

>> Reguest:

MOVE / Col | WHTTP/ 1. 1
Host: exanpl e. com
Destination: /Coll X/ Coll z

If the request succeeded, the resulting state would be:

fmoocs-oococococooooo +
| Root Collection |
| bi ndings: |
| Col I X |
fmoocs-oococococooooo +

I

I

dfmcococsoocoocsoocoo + |

| Collection Cl | |

+----> | bindings: | |
I I Col I'Y | I
| dfmcococsoocoocsoocoo + |
I I I
I I I

| oo +

| | Collection C2 |

| | bindings: |
| | Collz |

| oo +

I I
I I
ffeocccocccocooccoocoo +

2.6. PROPFIND and Bindings

Consistent with [RFC4918], the value of a dead property MUST be independent of the number of bindings to
its host resource or of the path submitted to PROPFIND. On the other hand, the behavior for each live property
depends on itsindividual definition (for example, see [RFC3744], Section 5, Paragraph 2 for a case where

the value isindependent of its path and bindings, and [RFC4918], Section 8.8 for a discussion about the live
properties DAV :getetag and DAV :getlastmodified, which may behave differently).

2.7. Determining Whether Two Bindings Areto the Same Resour ce

It is useful to have some way of determining whether two bindings are to the same resource. Two resources
might have identical contents and properties, but not be the same resource (e.g., an update to one resource does
not affect the other resource).

The REQUIRED DAV :resource-id property defined in Section 3.1 is aresource identifier, which MUST be
unique across al resources for all time. If the values of DAV :resource-id returned by PROPFIND requests

through two bindings are identical character by character, the client can be assured that the two bindings are to
the same resource.

The DAV:resource-id property is created, and its value assigned, when the resource is created. The value of
DAV:resource-id MUST NOT be changed. Even after the resource is no longer accessible through any URI,
that value MUST NOT be reassigned to another resource's DAV :resource-id property.

Any method that creates a new resource MUST assign a new, unique value to its DAV :resource-id property.
For example, a PUT applied to anull resource, COPY (when not overwriting an existing target) and CHECKIN

(see [RFC3253], Section 4.4) must assign a new, unique value to the DAV :resource-id property of the new
resource they create.

Clemm, et al. Experimental [Page 15]

https://www.rfc-editor.org/rfc/rfc3744.html#section-5
https://www.rfc-editor.org/rfc/rfc4918.html#section-8.8
https://www.rfc-editor.org/rfc/rfc3253.html#section-4.4

RFC 5842 Binding Extensions to WebDAV April 2010

On the other hand, any method that affects an existing resource must not change the value of its DAV :resource-
id property. Specifically, aPUT or a COPY that updates an existing resource must not change the value of its
DAV:resource-id property. A REBIND, since it does not create a new resource, but only changes the location
of an existing resource, must not change the value of the DAV :resource-id property.

2.8. Discovering the Bindingsto a Resour ce

An OPTIONAL DAV :parent-set property on aresource provides alist of the bindings that associate a
collection and a URI segment with that resource. If the DAV :parent-set property exists on a given resource, it
MUST contain a complete list of all bindings to that resource that the client is authorized to see. When deciding
whether to support the DAV :parent-set property, server implementers/ administrators should balance the

benefits it provides against the cost of maintaining the property and the security risks enumerated in Sections
12.4and 12.5.

Clemm, et al. Experimental [Page 16]

RFC 5842 Binding Extensions to WebDAV April 2010

3. Properties

The bind feature introduces the properties defined below.

A DAV:alprop PROPFIND request SHOULD NOT return any of the properties defined by this document.
This allows a binding server to perform efficiently when anaive client, which does not understand the cost of
asking a server to compute all possible live properties, issues a DAV:alprop PROPFIND request.

3.1. DAV:resource-id Property

The DAV:resource-id property isa REQUIRED property that enables clients to determine whether two
bindings are to the same resource. The value of DAV :resource-id isa URI, and may use any registered URI
scheme that guarantees the uniqueness of the value across all resources for al time (e.g., the urn:uuid: URN
namespace defined in [RFC4122] or the opaguel ocktoken: URI scheme defined in [RFC4918]).

<! ELEMENT resource-id (href)>

3.2. DAV:parent-set Property

The DAV :parent-set property isan OPTIONAL property that enables clients to discover what collections
contain a binding to this resource (i.e., what collections have that resource as an internal member). It contains
an href/segment pair for each collection that has a binding to the resource. The href identifies the collection,
and the segment identifies the binding name of that resource in that collection.

A given collection MUST appear only once in the DAV :parent-set for any given binding, even if there are
multiple URI mappings to that collection.

<! ELEMENT parent-set (parent)*>

<! ELEMENT parent (href, segnent)>

<! ELEMENT segnent (#PCDATA) >

<! -- PCDATA val ue: segnent, as defined in Section 3.3 of
[RFC3986] -->

3.2.1. Examplefor DAV:parent-set Property

For example, if collection C1 is mapped to both /CollX and /CollY, and C1 contains a binding named "x.gif"
to aresource R1, then either [/CollX, x.gif] or [/CollY, x.gif] can appear in the DAV :parent-set of R1, but

not both. But if C1 aso had abinding named "y.gif" to R1, then there would be two entriesfor C1 in the
DAV:parent-set of R1 (i.e., both [/Coll X, x.gif] and [/CollX, y.qgif] or, alternatively, both [/CollY, x.gif] and [/
CollY, y.gif]).

Clemm, et al. Experimental [Page 17]

https://www.rfc-editor.org/rfc/rfc3986.html#section-3.3

RFC 5842 Binding Extensions to WebDAV April 2010

| Root Coll ection |
| bindings: |
| CollX CollY |

| Collection C1 |
| bindi ngs: |
| x.gif y.gif |

In this case, one possible value for the DAV :parent-set property on "/CollX/x.gif" would be:

<parent-set xm ns="DAV:">
<par ent >
<hr ef >/ Col | X</ hr ef >
<segnent >x. gi f </ segnent >
</ par ent >
<par ent >
<hr ef >/ Col | X</ hr ef >
<segnent >y. gi f </ segnent >
</ par ent >
</ parent - set >

Clemm, et al. Experimental [Page 18]

RFC 5842 Binding Extensions to WebDAV April 2010

4. BIND Method

The BIND method modifies the collection identified by the Request-URI, by adding a new binding from the
segment specified in the BIND body to the resource identified in the BIND body.

If aserver cannot guarantee the integrity of the binding, the BIND request MUST fail. Note that it is especially
difficult to maintain the integrity of cross-server bindings. Unless the server where the resource resides knows
about all bindings on al serversto that resource, it may unwittingly destroy the resource or make it inaccessible
without notifying another server that manages a binding to the resource. For example, if server A permitsthe
creation of abinding to aresource on server B, server A must notify server B about its binding and must have
an agreement with B that B will not destroy the resource while A's binding exists. Otherwise, server B may
receive a DELETE request that it thinks removes the last binding to the resource and destroy the resource while
A'sbinding still exists. The precondition DAV :cross-server-binding is defined below for cases where servers
fail cross-server BIND requests because they cannot guarantee the integrity of cross-server bindings.

By default, if there already is abinding for the specified segment in the collection, the new binding replaces
the existing binding. This default binding replacement behavior can be overridden using the Overwrite header
defined in Section 10.6 of [RFC4918].

If aBIND request fails, the server state preceding the request MUST be restored. This method is unsafe and
idempotent (see [RFC2616], Section 9.1).
Mar shalling:

Therequest MAY include an Overwrite header.

The request body MUST be a DAV:bind XML element.

<! ELEMENT bi nd (segnment, href)>

If the request succeeds, the server MUST return 201 (Created) when a new binding was created and 200
(OK) or 204 (No Content) when an existing binding was replaced.

If aresponse body for a successful request isincluded, it MUST be a DAV :bind-response XML element.
Note that this document does not define any elements for the BIND response body, but the DAV :bind-
response element is defined to ensure interoperability between future extensions that do define elements
for the BIND response body.

<! ELEMENT bi nd-response ANY>

Preconditions:
(DAV:bind-into-collection): The Regquest-URI MUST identify a collection.
(DAV :bind-source-exists): The DAV:href element MUST identify aresource.
(DAV:binding-allowed): The resource identified by the DAV :href supports multiple bindingsto it.

(DAV :cross-server-binding): If the resource identified by the DAV :href element in the request body is on
another server from the collection identified by the Request-URI, the server MUST support cross-server
bindings (servers that do not support cross-server bindings can use this condition code to signal the client
exactly why the request failed).

(DAV:name-allowed): The name specified by the DAV :segment is available for use as a new binding
name,

(DAV:can-overwrite): If the collection already contains a binding with the specified path segment, and if
an Overwrite header isincluded, the value of the Overwrite header MUST be"T".

(DAV:cycle-alowed): If the DAV:href element identifies a collection, and if the Request-URI identifies
acollection that isamember of that collection, the server MUST support cycles in the URI namespace

Clemm, et al. Experimental [Page 19]

https://www.rfc-editor.org/rfc/rfc4918.html#section-10.6
https://www.rfc-editor.org/rfc/rfc2616.html#section-9.1

RFC 5842 Binding Extensions to WebDAV April 2010

(servers that do not support cycles can use this condition code to signal the client exactly why the request
failed).

(DAV :locked-update-allowed): If the collection identified by the Request-URI iswrite-locked, then the
appropriate token MUST be specified in an If request header.

(DAV:locked-overwrite-allowed): If the collection aready contains a binding with the specified path
segment, and if that binding is protected by awrite lock, then the appropriate token MUST be specified in
an If request header.

Postconditions:

(DAV:new-binding): The collection MUST have a binding that maps the segment specified in the
DAV :segment element in the request body to the resource identified by the DAV :href element in the
request body.

4.1. Example: BIND
>> Reguest:

BIND /Col | Y HTTP/ 1.1

Host: www. exanpl e. com

Cont ent - Type: application/xm; charset="utf-8"
Content-Length: 172

<?xm version="1.0" encodi ng="utf-8" ?>
<D: bi nd xm ns: D="DAV: " >

<D: segnent >bar . ht nl </ D: segnent >

<D: href >htt p: / / www. exanpl e. com Col | X/ f 0oo. ht Ml </ D; hr ef >
</ D: bi nd>

>> Response:

HTTP/ 1.1 201 Created
Location: http://ww. exanpl e. com Col | Y/ bar. htm

The server added a new binding to the collection, "http://www.example.com/CollY", associating "bar.html"
with the resource identified by the URI "http://www.example.com/ColIX/foo.html". Clients can now use the
URI "http://www.example.com/CallY /bar.html™ to submit requests to that resource.

Clemm, et al. Experimental [Page 20]

RFC 5842 Binding Extensions to WebDAV April 2010

5. UNBIND Method

The UNBIND method modifies the collection identified by the Request-URI by removing the binding
identified by the segment specified in the UNBIND body.

Once aresource is unreachable by any URI mapping, the server MAY reclaim system resources associated with
that resource. If UNBIND removes a binding to aresource, but there remain URI mappings to that resource, the
server MUST NOT reclaim system resources associated with the resource.

If an UNBIND request fails, the server state preceding the request MUST be restored. This method is unsafe
and idempotent (see [RFC2616], Section 9.1).
Marshalling:

The request body MUST be a DAV :unbind XML element.

<! ELEMENT unbi nd (segnent) >

If the request succeeds, the server MUST return 200 (OK) or 204 (No Content) when the binding was
successfully deleted.

If aresponse body for a successful request isincluded, it MUST be a DAV :unbind-response XML
element. Note that this document does not define any elements for the UNBIND response body, but the
DAV :unbind-response element is defined to ensure interoperability between future extensions that do
define elements for the UNBIND response body .

<! ELEMENT unbi nd-r esponse ANY>

Preconditions:
(DAV :unbind-from-collection): The Request-URI MUST identify a collection.
(DAV :unbind-source-exists): The DAV :segment element MUST identify a binding in the collection
identified by the Request-URI.
(DAV:locked-update-allowed): If the collection identified by the Request-URI is write-locked, then the
appropriate token MUST be specified in the request.
(DAV :protected-url-del etion-allowed): If the binding identified by the segment is protected by awrite
lock, then the appropriate token MUST be specified in the request.

Postconditions:
(DAV :binding-deleted): The collection MUST NOT have a binding for the segment specified in the
DAV :segment element in the request body.

(DAV:lock-deleted): If the internal member URI of the binding specified by the Request-URI and the
DAV :segment element in the request body was protected by awrite lock at the time of the request, that
write lock must have been deleted by the request.

5.1. Example: UNBIND
>> Reguest:

UNBI ND / Col | X HTTP/ 1. 1

Host: www. exanpl e. com

Cont ent - Type: application/xm; charset="utf-8"
Content-Length: 117

<?xm version="1.0" encodi ng="utf-8" ?>
<D: unbi nd xm ns: D="DAV: " >

<D: segnent >f 0o. ht nl </ D: segnent >
</ D: unbi nd>

Clemm, et al. Experimental [Page 21]

https://www.rfc-editor.org/rfc/rfc2616.html#section-9.1

RFC 5842 Binding Extensions to WebDAV April 2010

>> Response;

HTTP/ 1.1 200 OK

The server removed the binding named "foo.html" from the collection, "http://www.example.com/Col I X".
A request to the resource named "http://www.example.com/Col I X/foo.html" will return a 404 (Not Found)
response.

Clemm, et al. Experimental [Page 22]

RFC 5842 Binding Extensions to WebDAV April 2010

6. REBIND Method

The REBIND method removes a binding to aresource from a collection, and adds a binding to that resource
into the collection identified by the Request-URI. The request body specifies the binding to be added (segment)
and the old hinding to be removed (href). It is effectively an atomic form of aMOVE request, and MUST be
treated the same way as MOV E for the purpose of determining access permissions.

If aREBIND request fails, the server state preceding the request MUST be restored. This method is unsafe and
idempotent (see [RFC2616], Section 9.1).
Marshalling:

Therequest MAY include an Overwrite header.

The request body MUST be a DAV :rebind XML element.

<! ELEMENT rebind (segnment, href)>

If the request succeeds, the server MUST return 201 (Created) when a new binding was created and 200
(OK) or 204 (No Content) when an existing binding was replaced.

If aresponse body for a successful request isincluded, it MUST be a DAV:rebind-response XML
element. Note that this document does not define any elements for the REBIND response body, but the
DAV :rebind-response element is defined to ensure interoperability between future extensions that do
define elements for the REBIND response body.

<! ELEMENT r ebi nd-response ANY>

Preconditions:
(DAV :rebind-into-collection): The Request-URI MUST identify a collection.
(DAV:rebind-source-exists): The DAV:href element MUST identify aresource.
(DAV :cross-server-binding): If the resource identified by the DAV :href element in the request body is on
another server from the collection identified by the Request-URI, the server MUST support cross-server
bindings (servers that do not support cross-server bindings can use this condition code to signal the client
exactly why the request failed).
(DAV:name-allowed): The name specified by the DAV :segment is available for use as a new binding
name.
(DAV:can-overwrite): If the collection aready contains a binding with the specified path segment, and if
an Overwrite header isincluded, the value of the Overwrite header MUST be"T".
(DAV:cycle-alowed): If the DAV:href element identifies a collection, and if the Request-URI identifies
acollection that isamember of that collection, the server MUST support cyclesin the URI namespace
(serversthat do not support cycles can use this condition code to signal the client exactly why the request
failed).
(DAV:locked-update-allowed): If the collection identified by the Request-URI is write-locked, then the
appropriate token MUST be specified in the request.
(DAV :protected-url-modification-allowed): If the collection identified by the Request-URI aready
contains a binding with the specified path segment, and if that binding is protected by awrite lock, then
the appropriate token MUST be specified in the request.
(DAV:locked-source-collection-update-allowed): If the collection identified by the parent collection prefix
of the DAV:href URI iswrite-locked, then the appropriate token MUST be specified in the request.

(DAV :protected-source-url-del etion-allowed): If the DAV:href URI is protected by awrite lock, then the
appropriate token MUST be specified in the request.

Postconditions:

Clemm, et al. Experimental [Page 23]

https://www.rfc-editor.org/rfc/rfc2616.html#section-9.1

RFC 5842 Binding Extensions to WebDAV April 2010

(DAV:new-binding): The collection MUST have a binding that maps the segment specified in the
DAV :segment element in the request body, to the resource that was identified by the DAV :href element in
the request body.

(DAV:binding-deleted): The URL specified in the DAV:href element in the request body MUST NOT be
mapped to aresource.

(DAV:lock-deleted): If the URL specified in the DAV:href element in the request body was protected by a
write lock at the time of the request, that write lock must have been deleted by the request.

6.1. Example: REBIND
>> Reguest:

REBIND /Col | X HTTP/ 1. 1

Host: www. exanpl e. com

Cont ent - Type: application/xm; charset="utf-8"
Cont ent - Lengt h: 176

<?xm version="1.0" encodi ng="utf-8" ?>
<D: rebi nd xm ns: D="DAV: " >

<D: segnent >f 0o. ht m </ D: segnent >

<D: href >htt p: / / ww. exanpl e. com Col | Y/ bar. ht m </ D: hr ef >
</ D: r ebi nd>

>> Response:

HTTP/ 1.1 200 OK

The server added a new binding to the collection, "http://www.example.com/Coll X", associating "foo.html"
with the resource identified by the URI "http://www.example.com/CallY /bar.html" and removes the binding
named "bar.html" from the collection identified by the URI "http://www.example.com/CollY". Clients can now
use the URI "http://www.example.com/Col | X/foo.html" to submit requests to that resource, and requests on the
URI "http://www.example.com/Call Y /bar.html" will fail with a404 (Not Found) response.

Clemm, et al. Experimental [Page 24]

RFC 5842 Binding Extensions to WebDAV April 2010

6.2. Example: REBIND in Presence of Locksand Bind L oops

To illustrate the effects of locks and bind |oops on a REBIND operation, consider the following collection:

frmcccococococsoooos +
| Root Collection |
| bindings: |
| CollW |
frmcccococococsoooos +
I
I
I
fimcccococcooscsoocococoocsoscoooca +
| Collection C1 | <-------- +
LOCKED infinity	
(lock token L1)	
bindi ngs:	
Coll X CollY	
T T +	
I I I	
	(creates
I I I	
Fem e e e e oo s I T +	
Collection C2	
(inherit lock)	
(lock token L1)	
bindi ngs:	
{none}	
Fem e e e e oo s I T +	
I I I	
+----- +	
[
frmocoococscccocccooscsoososos +

| Resource R2 |
| (lock inherited fromCl) |
| (lock token L1) |

(where L1 is"urn:uuid:f92d4fae-7012-11ab-a765-00c0calf6bf9").

Note that the binding between CollZ and C1 creates aloop in the containment hierarchy. Servers are not
required to support such loops, though the server in this example does.

The REBIND request below will remove the segment "CollZ" from C3 and add a hew binding from "CollA" to
the collection C2.

REBIND /Col IWCol | X HTTP/ 1. 1

Host: www. exanpl e. com

I f: (<urn:uuid:f92d4f ae- 7012- 11ab- a765- 00cOcalf 6bf 9>)
Cont ent - Type: application/xm; charset="utf-8"

Cont ent - Lengt h: 152

<?xm version="1.0" encodi ng="utf-8" ?>
<D: rebi nd xnl ns: D="DAV: " >

<D: segnent >Col | A</ D: segnent >

<D: href >/ Col | W Col | Y/ Col | Z</ D: hr ef >
</ D: r ebi nd>

Clemm, et al. Experimental [Page 25]

RFC 5842 Binding Extensions to WebDAV April 2010

The outcome of the REBIND operation is:

o +
| Root Collection |
| bindings: |
| CollW |
o +
I
I
I
dom oo +

| Collection C1 |
| LOCKED infinity |
| (lock token L1) |

| bindi ngs: |
| CollX CollY |
fimcccococcooscsoocococoocsoscoooca +
I n I
I [I
Fem e e e e oo s S I +
Collection C2			Collection C3	
(inherited lock)			(inherited	ock)
(lock token L1)			(lock token L1)	
bindi ngs:			bindings:	
CollA			y.oif	
B S I R +
I I I
B + |
(creates | oop) |
frmocoococscccocccooscsoososos +

| Resource R2 |
| (inherited lock fromCl) |
| (lock token L1) |

Clemm, et al. Experimental [Page 26]

RFC 5842 Binding Extensions to WebDAV April 2010

7. Additional Status Codes

7.1. 208 Already Reported

The 208 (Already Reported) status code can be used inside a DAV :propstat response element to avoid
enumerating the internal members of multiple bindings to the same collection repeatedly. For each binding

to acollection inside the request's scope, only one will be reported with a 200 status, while subsequent
DAV:response elements for all other bindings will use the 208 status, and no DAV :response elements for their
descendants are included.

Note that the 208 status will only occur for "Depth: infinity" requests, and that it is of particular importance
when the multiple collection bindings cause a bind loop as discussed in Section 2.2.

A client can request the DAV :resource-id property in a PROPFIND request to guarantee that they can
accurately reconstruct the binding structure of a collection with multiple bindings to a single resource.

For backward compatibility with clients not aware of the 208 status code appearing in multistatus response
bodies, it SHOULD NOT be used unless the client has signaled support for this specification using the "DAV"
request header (see Section 8.2). Instead, a 508 status should be returned when a binding loop is discovered.
This allows the server to return the 508 as the top-level return status, if it discoversit before it started the
response, or in the middle of a multistatus, if it discoversit in the middle of streaming out a multistatus
response.

7.1.1. Example: PROPFIND by Bind-Aware Client

For example, consider a PROPFIND request on /Call (bound to collection C), where the members of /Call are/
Coll/Foo (bound to resource R) and /Coll/Bar (bound to collection C).

>> Reguest:

PROPFIND / Col | / HTTP/ 1.1

Host: www. exanpl e. com

Depth: infinity

DAV: bi nd

Cont ent - Type: application/xm; charset="utf-8"
Cont ent - Lengt h: 152

<?xm version="1.0" encodi ng="utf-8" ?>
<D: propfind xm ns: D="DAV: " >
<D: pr op>
<D: di spl aynane/ >
<D: resource-id/ >
</ D: pr op>
</ D: pr opfi nd>

Clemm, et al. Experimental [Page 27]

RFC 5842 Binding Extensions to WebDAV April 2010

>> Response;

HTTP/ 1.1 207 Multi-Status
Cont ent - Type: application/xm; charset="utf-8"
Content - Lengt h: 1241

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mul tistatus xm ns: D="DAV: ">
<D: response>
<D: href >http://ww. exanpl e. com Col | / </ D: hr ef >
<D: pr opst at >
<D: prop>
<D: di spl aynane>Loop Deno</D: di spl aynanme>
<D: resource-i d>
<D: hr ef
>ur n: uui d: f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 8</ D: hr ef >
</ D: resource-id>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
<D: response>
<D: href >htt p: / / ww. exanpl e. com Col | / Foo</ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: di spl aynane>Bi rd | nvent ory</D: di spl aynanme>
<D: resource-i d>
<D: hr ef
>ur n: uui d: f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 9</ D: hr ef >
</ D: resource-id>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
<D: response>
<D: href >htt p: / / www. exanpl e. com Col | / Bar </ D: hr ef >
<D: pr opst at >
<D: prop>
<D: di spl aynane>Loop Deno</D: di spl aynane>
<D: resource-i d>
<D: hr ef
>ur n: uui d: f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 8</ D: hr ef >
</ D: resource-id>
</ D: pr op>
<D: status>HTTP/ 1.1 208 Al ready Reported</D: status>
</ D: pr opst at >
</ D: response>
</D:mul tistatus>

7.1.2. Example: PROPFIND by Non-Bind-Aware Client

In this example, the client isn't aware of the 208 status code introduced by this specification. Asthe "Depth:
infinity" PROPFIND request would cause aloop condition, the whole request is rejected with a 508 status.

Clemm, et al. Experimental [Page 28]

RFC 5842 Binding Extensions to WebDAV April 2010

>> Reguest:

PROPFIND / Col I/ HTTP/ 1.1

Host: www. exanpl e. com

Depth: infinity

Cont ent - Type: application/xm; charset="utf-8"
Cont ent - Lengt h: 125

<?xm version="1.0" encodi ng="utf-8" ?>
<D: propfind xm ns: D="DAV: " >

<D: prop> <D: di spl aynane/ > </ D: pr op>
</ D: pr opfi nd>

>> Response:

HTTP/ 1.1 508 Loop Detected

7.2. 508 Loop Detected

The 508 (Loop Detected) status code indicates that the server terminated an operation because it encountered
an infinite loop while processing a request with "Depth: infinity". This status indicates that the entire operation
failed.

Clemm, et al. Experimental [Page 29]

RFC 5842 Binding Extensions to WebDAV April 2010

8. Capability Discovery

8.1. OPTIONS Method

If the server supports bindings, it MUST return the compliance class name "bind" as afield in the "DAV"
response header (see [RFC4918], Section 10.1) from an OPTIONS request on any resource implemented by
that server. A value of "bind" inthe "DAV" header MUST indicate that the server supports all MUST-level
requirements and REQUIRED features specified in this document.

8.2. 'DAV' Request Header

Clients SHOULD signal support for all MUST-level requirements and REQUIRED features by submitting a
"DAV" request header containing the compliance class name "bind". In particular, the client MUST understand
the 208 status code defined in Section 7.1.

Clemm, et al. Experimental [Page 30]

https://www.rfc-editor.org/rfc/rfc4918.html#section-10.1

RFC 5842 Binding Extensions to WebDAV April 2010

9. Relationship to Locking in WebDAV

Locking is an optional feature of WebDAV ([RFC4918]). The base WebDAYV specification and this protocol
extension have been designed in parallel, making sure that all features of WebDAV can be implemented on a
server that implements this protocol as well.

Unfortunately, WebDAV uses the term "lock-root" inconsistently. It isintroduced in Section 6.1 of [RFC4918],
point 2, as.

2. A resource becomes directly locked when a LOCK request to a URL of that resource creates a new
lock. The "lock-root" of the new lock isthat URL. If at the time of the request, the URL is not mapped to a
resource, a new empty resource is created and directly locked.

On the other hand, [RFC4918], Section 9.10.1 states:

A LOCK request to an existing resource will create a lock on the resource identified by the Request-URI,
provided the resource is not already locked with a conflicting lock. The resource identified in the Reguest-
URI becomes the root of the lock.

Servers that implement both WebDAYV locking and support for multiple bindings MUST use the first
interpretation: the lock-root is the URI through which the lock was created, not aresource. This URI, and
potential aliases of this URI ([RFC4918], Section 5), are said to be "protected” by the lock.

Asdefined in the introduction to Section 7 of [RFC4918], write operations that modify the state of alocked
resource require that the lock token is submitted with the request. Consistent with WebDAYV, the state of the
resource consists of the content ("any variant"), dead properties, lockable live properties (item 1), plus, for a
collection, al its bindings (item 2). Note that this, by definition, does not depend on the Request-URI to which
the write operation is applied (the locked state is a property of the resource, not its URI).

However, the lock-root is the URI through which the lock was requested. Thus, the protection defined in item
3 of the list does not apply to additional URIs that may be mapped to the same resource due to the existence of
multiple bindings.

9.1. Example: Locking and Multiple Bindings

Consider aroot collection "/", containing the two collections C1 and C2, named "/CollX" and "/CollY", and a
child resource R, bound to C1 as"/Coll X/test" and bound to C2 as"/CollY /test":

e +
| Root Collection |
| bi ndi ngs: |
| CollX CollY |
e +
I I
I I
I I
e + Ao +
Collection CL		Collection C2
bi ndi ngs:		bindings:
t est		t est
e + Ao +		
I I		
I I		
I I		
o +		
Resource R		
o +

Given a host name of "www.example.com™, applying a depth-zero write lock to "/Coll X/test" will lock the
resource R, and the lock-root of thislock will be "http://www.example.com/Col | X /test".

Clemm, et al. Experimental [Page 31]

https://www.rfc-editor.org/rfc/rfc4918.html#section-6.1
https://www.rfc-editor.org/rfc/rfc4918.html#section-9.10.1
https://www.rfc-editor.org/rfc/rfc4918.html#section-5
https://www.rfc-editor.org/rfc/rfc4918.html#section-7

RFC 5842 Binding Extensions to WebDAV April 2010

Thus, the following operations will require that the associated lock token is submitted with the "If" request
header ([RFC4918], Section 10.4):

* aPUT or PROPPATCH request modifying the content or lockable properties of resource R (as R islocked)
-- no matter which URI is used as reguest target, and

e aMOVE, REBIND, UNBIND, or DELETE request causing "/CollX/test" not to be mapped to resource R
anymore (be it addressed to "/CollX" or "/CollX/test").
The following operations will not require submission of the lock token:

» aDELETE request addressed to "/Coll'Y" or "/CollY /test", as it does not affect the resource R, nor the lock-
root,

» for the same reason, an UNBIND request removing the binding "test" from collection C2, or the binding
"CollY" from the root collection, and

e similarly,aMOVE or REBIND request causing "/CollY /test" not being mapped to resource R anymore.

Note that despite the lock-root being "http://www.example.com/Coll X /test", an UNLOCK request can be
addressed through any URI mapped to resource R, as UNLOCK operates on the resource identified by the
Request-URI, not that URI (see [RFC4918], Section 9.11).

Clemm, et al. Experimental [Page 32]

https://www.rfc-editor.org/rfc/rfc4918.html#section-10.4
https://www.rfc-editor.org/rfc/rfc4918.html#section-9.11

RFC 5842 Binding Extensions to WebDAV April 2010

10. Relationship to WebDAV Access Control Protocol
Note that the WebDAV Access Control Protocol has been designed for compatibility with systems that allow
multiple URIs to map to the same resource (see [RFC3744], Section 5):

Access control properties (especially DAV:acl and DAV:inherited-acl-set) are defined on the resource
identified by the Request-URI of a PROPFIND reguest. A direct consequenceisthat if the resourceis
accessible via multiple URI, the value of access control propertiesisthe same across these URI.

Furthermore, note that BIND and REBIND behave the same as MOV E with respect to the DAV:acl property
(see [RFC3744], Section 7.3).

Clemm, et al. Experimental [Page 33]

https://www.rfc-editor.org/rfc/rfc3744.html#section-5
https://www.rfc-editor.org/rfc/rfc3744.html#section-7.3

RFC 5842 Binding Extensions to WebDAV April 2010

11. Relationship to Versioning Extensionsto WebDAV

Servers that implement Workspaces ([RFC3253], Section 6) and Version-Controlled Collections ([RFC3253],
Section 14) already need to implement BIND-like behavior in order to handle UPDATE and UNCHECKOUT
semantics.

Consider aworkspace "/wsl/", containing the version-controlled, checked-out collections C1 and C2, named "/
wsl/CollX" and "/wsl/CollY", and a version-controlled resource R, bound to C1 as "/wsl/CollX/test":

e +
| Workspace |
| bi ndi ngs: |
| CollX CollY |
e +
I I
I I
I I
S E R +
| Collection CL | | Collection C2 |
| bi ndi ngs: | | |
I test (I I
S E R +
I
I
I
o +
| Resource R |
o +

Moving "/wsl/CollX/test" into "/wsl/Coll Y™, checking in C2, but undoing the checkout on C1 will undo part of
the MOV E request, thus restoring the binding from C1 to R, but keeping the new binding from C2 to R:

>> Reguest:

MOVE /ws1/ Col | X/test HTTP/ 1.1
Host: www. exanpl e. com
Destination: /wsl1l/Coll Y/test

>> Response:

HTTP/ 1.1 204 No Cont ent

>> Reguest:

CHECKIN /ws1/ Col I Y/ HTTP/ 1.1
Host: www. exanpl e. com

>> Response:

HTTP/ 1.1 201 Created
Cache- Control: no-cache
Location: http://repo.exanpl e.con his/17/ver/42

>> Reguest:

UNCHECKOUT /wsl/ Col | XI' HTTP/ 1.1
Host: www. exanpl e. com

Clemm, et al. Experimental [Page 34]

https://www.rfc-editor.org/rfc/rfc3253.html#section-6
https://www.rfc-editor.org/rfc/rfc3253.html#section-14

RFC 5842 Binding Extensions to WebDAV April 2010

>> Response;

HTTP/ 1.1 200 OK
Cache-Control : no-cache

Asaresult, both C1 and C2 would have a binding to R:

fcocc-ocoococoocococoooooooo +
| Workspace |
| bi ndings: |
| CollX CollY |
fcocc-ocoococoocococoooooooo +
I I
I I
I I
docococsoocoooo= b dfmocsoocoocsooco-o +
Collection CL		Collection C2
bindi ngs:		bindings:
t est		t est
docococsoocoooo= b dfmocsoocoocsooco-o +		
I I		
I I		
I I		
dfmcococsoocoocsoocoo +		
Resource R		
dfmcococsoocoocsoocoo +

The MOVE semantics defined in Section 3.15 of [RFC3253] aready require that "/wsl/Coll X /test" and "/wsl/
CollY /test" will have the same version history (as exposed in the DAV :version-history property). Furthermore,

the UNCHECKOUT semantics (which in this caseis similar to UPDATE, see Section 14.11 of [RFC3253])
require:

If a new version-controlled member isin a workspace that already has a version-controlled resource for
that version history, then the new version-controlled member MUST be just a binding (i.e., another name
for) that existing version-controlled resource.

Thus, "/wsl/CollX/test" and "/wsl/CollY /test" will be bindings to the same resource R, and have identical
DAV:resource-id properties.

Clemm, et al. Experimental [Page 35]

https://www.rfc-editor.org/rfc/rfc3253.html#section-3.15
https://www.rfc-editor.org/rfc/rfc3253.html#section-14.11

RFC 5842 Binding Extensions to WebDAV April 2010

12. Security Considerations

This section is provided to make WebDAV implementers aware of the security implications of this protocol.

All of the security considerations of HTTP/1.1 ([RFC2616], Section 15) and the WebDAYV Distributed
Authoring Protocol specification ([RFC4918], Section 20) also apply to this protocol specification. In addition,
bindings introduce several new security concerns and increase the risk of some existing threats. These issues
are detailed below.

12.1. Privacy Concerns

In a context where cross-server bindings are supported, creating bindings on atrusted server may make it
possible for a hostile agent to induce users to send private information to atarget on adifferent server.

12.2. Bind Loops

Although bind loops were already possiblein HTTP 1.1, the introduction of the BIND method creates a new
avenue for clients to create loops accidentally or maliciously. If the binding and its target are on the same

server, the server may be able to detect BIND requests that would create loops. Servers are required to detect
loops that are caused by bindings to collections during the processing of any requests with "Depth: infinity".

12.3. Bindingsand Denial of Service

Denial-of-service attacks were already possible by posting URIs that were intended for limited use at heavily
used Web sites. The introduction of BIND creates a new avenue for similar denial-of-service attacks. If cross-
server bindings are supported, clients can now create bindings at heavily used sites to target locations that were
not designed for heavy usage.

12.4. Private Locations May Be Revealed

If the DAV :parent-set property is maintained on aresource, the owners of the bindings risk revealing private
locations. The directory structures where bindings are located are available to anyone who has access to the
DAV :parent-set property on the resource. Moving a binding may reveal its new location to anyone with access
to DAV:parent-set on its resource.

12.5. DAV:parent-set and Denial of Service

If the server maintains the DAV :parent-set property in response to bindings created in other administrative
domains, it is exposed to hostile attempts to make it devote resources to adding bindings to the list.

Clemm, et al. Experimental [Page 36]

https://www.rfc-editor.org/rfc/rfc2616.html#section-15
https://www.rfc-editor.org/rfc/rfc4918.html#section-20

RFC 5842 Binding Extensions to WebDAV April 2010

13. Internationalization Consider ations

All internationalization considerations mentioned in Section 19 of [RFC4918] also apply to this document.

Clemm, et al. Experimental [Page 37]

https://www.rfc-editor.org/rfc/rfc4918.html#section-19

RFC 5842 Binding Extensions to WebDAV April 2010

14. 1ANA Considerations

Section 7 defines the HTTP status codes 208 (Already Reported) and 508 (L oop Detected), which have been
added to the HTTP Status Code Registry.

Clemm, et al. Experimental [Page 38]

RFC 5842 Binding Extensions to WebDAV April 2010

15. Acknowledgements

This document is the collaborative product of the authors and Tyson Chihaya, Jim Davis, Chuck Fay and
Judith Slein. It has benefited from thoughtful discussion by Jim Amsden, Peter Carlson, Steve Carter, Ken
Coar, Ellis Cohen, Dan Connoally, Bruce Cragun, Cyrus Daboo, Spencer Dawkins, Mark Day, Werner Donne,
Rajiv Dulepet, David Durand, Lisa Dusseault, Stefan Eissing, Roy Fielding, Y aron Goland, Joe Hildebrand,
Fred Hitt, Alex Hopmann, James Hunt, Marcus Jager, Chris Kaler, Manoj Kasichainula, Rohit Khare, Brian
Korver, Daniel Lal iberte, Steve Martin, Larry Masinter, Jeff McAffer, Alexey Melnikov, Surendra Koduru
Reddy, Max Rible, Sam Ruby, Bradley Sergeant, Nick Shelness, John Stracke, John Tigue, John Turner, Kevin
Wiggen, and other members of the concluded WebDAYV working group.

Clemm, et al. Experimental [Page 39]

RFC 5842

Binding Extensions to WebDAV April 2010

16. References

16.1. Normative References

[RFC2119]

[RFC2616]

[RFC3986]

[RFC4918]

[XML]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels', BCP 14, RFC 2119, March
1997.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, January 2005.

Dusseault, L., Ed., "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)",
RFC 4918, June 2007.

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and F. Y ergeau, "Extensible Markup L anguage
(XML) 1.0 (Fifth Edition)", W3C REC-xmlI-20081126, November 2008, <http://www.w3.0rg/TR/200
8/REC-xml-20081126/>.

16.2. Informative References

[RFC3253]

[RFC3744]

[RFC4122]

Clemm, et al.

Clemm, G., Amsden, J,, Ellison, T., Kaler, C., and J. Whitehead, "V ersioning Extensions to WebDAV
(Web Distributed Authoring and Versioning)", RFC 3253, March 2002.

Clemm, G., Reschke, J., Sedlar, E., and J. Whitehead, "Web Distributed Authoring and Versioning
(WebDAV) Access Control Protocol”, RFC 3744, May 2004.

Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace",
RFC 4122, July 2005.

Experimental [Page 40]

https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2616.html
https://www.rfc-editor.org/rfc/rfc2616.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/info/std66
https://www.rfc-editor.org/rfc/rfc4918.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
https://www.rfc-editor.org/rfc/rfc3253.html
https://www.rfc-editor.org/rfc/rfc3253.html
https://www.rfc-editor.org/rfc/rfc3744.html
https://www.rfc-editor.org/rfc/rfc3744.html
https://www.rfc-editor.org/rfc/rfc4122.html

RFC 5842 Binding Extensions to WebDAV April 2010

| ndex DAV :protected-url-del etion-allowed precondition 21
DAV :protected-url-modification-allowed precondition 23
2 DAV :rebind-into-collection precondition 23
208 Already Reported (status code) 8, 27, 30, 38 DAV:rebind-source-exists precondition 23
DAV :resource-id property 17
5 DAV :unbind-from-collection precondition 21
508 Loop Detected (status code) 8, 29, 38 DAV :unbind-source-exists precondition 21
B I
BIND method 19 Internal Member URI 6
Marshalling 19
Postconditions 20 L .
Preconditions 19 Locking 31
Binding 6 M
Binding Integrity 6, 7, 19 Methods
c BIND 19
Collection 6 REBIND 23
Condition Names UNBIND 21
DAV :bind-into-collection (pre) 19 p
DAV :bind-source-exists (pre) 19
DAV :binding-allowed (pre) 19 Erag;esrfig;nem 6
DAV:binding-deleted (post) 21, 24 DAV:parent-set 17
DAV:can-overwrite (pre) 19, 23 DAV resource-id 17
DAV:cross-server-binding (pre) 19, 23
DAV:cycle-allowed (pre) 19, 23 R
DAV:lock-deleted (post) 21, 24 REBIND method 23
DAV :locked-overwrite-allowed (pre) 20 Marshalling 23
DAV :locked-source-coll ection-update-allowed (pre) 23 Postconditions 23
DAV :locked-update-allowed (pre) 20, 21, 23 Preconditions 23
DAV:name-allowed (pre) 19, 23 RFC2119 5, 40
DAV:new-binding (post) 20, 24 RFC2616 5, 19, 21, 23, 36, 40
DAV :protected-source-url-del etion-allowed (pre) 23 Section 9.1 19, 21, 23
DAV :protected-url-deletion-allowed (pre) 21 Section 15 36
DAV :protected-url-modification-allowed (pre) 23 RFC3253 15, 34, 34, 35, 35, 40
DAV :rebind-into-collection (pre) 23 Section 3.15 35
DAV :rebind-source-exists (pre) 23 Section 4.4 15
DAV :unbind-from-collection (pre) 21 Section 6 34
DAV :unbind-source-exists (pre) 21 Section 14 34
D Section 14.11 35
RFC3744 15, 33, 33, 40
DAV header e Section 5 15, 33
compliance class 'bind' 30 Section 7.3 33
DAV :hind-into-collection precondition 19 REC3986 6. 17. 17. 40
DAV :bind-source-exists precondition 19 Section 3‘_3 6,, 17’

DAV :hinding-allowed precondition 19

DAV :hinding-deleted postcondition 21, 24
DAV:can-overwrite precondition 19, 23
DAV:cross-server-binding precondition 19, 23

RFC4122 17, 40
RFC49185, 5,5, 5, 6, 8, 9, 13, 13, 15, 15, 17, 19, 30, 31,
31, 31, 31, 31, 32, 32, 36, 37, 40

DAV:cycle-alowed precondition 19, 23 g:: gz g :;131
DAV:lock-deleted postcondition 21, 24 Section 7'31
DAV :locked-overwrite-allowed precondition 20 Section 8.8 15
DAV :locked-source-collection-update-al lowed Section 9' 88
precondition 23 . ’

DAV :locked-update-allowed precondition 20, 21, 23 g:: gz gi(l)ézs 1
DAV :name-allowed precondition 19, 23 Section 16 130
DAV :new-binding postcondition 20, 24 Section 10' 432
DAV :parent-set property 17 _ N Section 10.6 19
DAV :protected-source-url-del etion-allowed precondition Section 16 6

23

Clemm, et al. Experimental [Page 41]

RFC 5842 Binding Extensions to WebDAV April 2010

Section 175
Section 19 37
Section 20 36

S
Status Codes
208 Already Reported 8, 27, 30, 38
508 Loop Detected 8, 29, 38

U
UNBIND method 21
Marshalling 21
Postconditions 21
Preconditions 21
URI Mapping 6

X
XML 5, 40

Clemm, et al. Experimental [Page 42]

Authors Addresses

Geoffrey Clemm

IBM

550 King Street

Littleton, MA 01460

Email: geoffrey.clemm@us.ibm.com

Jason Crawford

IBM Research

P.O. Box 704

Y orktown Heights, NY 10598
Email: ccjason@us.ibm.com

Julian F. Reschke (editor)
greenbytes GmbH

Hafenweg 16

Muenster, NW 48155

Germany

Email: julian.reschke@greenbytes.de

Jim Whitehead

UC Santa Cruz, Dept. of Computer Science
1156 High Street

Santa Cruz, CA 95064

Email: g w@cse.ucsc.edu

mailto:geoffrey.clemm@us.ibm.com
mailto:ccjason@us.ibm.com
mailto:julian.reschke@greenbytes.de
mailto:ejw@cse.ucsc.edu

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Method Preconditions and Postconditions

	2. Overview of Bindings
	2.1. Bindings to Collections
	2.1.1. Bind Loops

	2.2. URI Mappings Created by a New Binding
	2.3. COPY and Bindings
	2.3.1. Example: COPY with "Depth: infinity" in Presence of Bind Loops
	2.3.2. Example: COPY Updating Multiple Bindings
	2.3.3. Example: COPY with "Depth: infinity" with Multiple Bindings to a Leaf Resource

	2.4. DELETE and Bindings
	2.5. MOVE and Bindings
	2.5.1. Example: Simple MOVE
	2.5.2. Example: MOVE Request Causing a Bind Loop

	2.6. PROPFIND and Bindings
	2.7. Determining Whether Two Bindings Are to the Same Resource
	2.8. Discovering the Bindings to a Resource

	3. Properties
	3.1. DAV:resource-id Property
	3.2. DAV:parent-set Property
	3.2.1. Example for DAV:parent-set Property

	4. BIND Method
	4.1. Example: BIND

	5. UNBIND Method
	5.1. Example: UNBIND

	6. REBIND Method
	6.1. Example: REBIND
	6.2. Example: REBIND in Presence of Locks and Bind Loops

	7. Additional Status Codes
	7.1. 208 Already Reported
	7.1.1. Example: PROPFIND by Bind-Aware Client
	7.1.2. Example: PROPFIND by Non-Bind-Aware Client

	7.2. 508 Loop Detected

	8. Capability Discovery
	8.1. OPTIONS Method
	8.2. 'DAV' Request Header

	9. Relationship to Locking in WebDAV
	9.1. Example: Locking and Multiple Bindings

	10. Relationship to WebDAV Access Control Protocol
	11. Relationship to Versioning Extensions to WebDAV
	12. Security Considerations
	12.1. Privacy Concerns
	12.2. Bind Loops
	12.3. Bindings and Denial of Service
	12.4. Private Locations May Be Revealed
	12.5. DAV:parent-set and Denial of Service

	13. Internationalization Considerations
	14. IANA Considerations
	15. Acknowledgements
	16. References
	16.1. Normative References
	16.2. Informative References

	Index
	Authors' Addresses

