
Internet Engineering Task Force (IETF) R. Fielding, Editor
Request for Comments: 7234 Adobe
Obsoletes: 2616 M. Nottingham, Editor
Category: Standards Track Akamai
ISSN: 2070-1721 J. Reschke, Editor

greenbytes
June 2014

Hypertext Transfer Protocol (HTTP/1.1): Caching

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative,
hypertext information systems. This document defines HTTP caches and the associated header fields that
control cache behavior or indicate cacheable response messages.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of
the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC
 57411.

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at http://www.rfc-editor.org/info/rfc72342.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info3) in effect on the date of publication of this document. Please review
these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the copyright in some of this material may
not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards
Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials,
this document may not be modified outside the IETF Standards Process, and derivative works of it may not be

1 https://www.rfc-editor.org/rfc/rfc5741.html#section-2
2 http://www.rfc-editor.org/info/rfc7234
3 http://trustee.ietf.org/license-info

#rfc.authors.1
#rfc.authors.1
#RFC2616
#rfc.authors.2
#rfc.authors.2
#rfc.authors.3
#rfc.authors.3
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
http://www.rfc-editor.org/info/rfc7234
http://trustee.ietf.org/license-info

RFC 7234 HTTP/1.1 Caching June 2014

created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Fielding, et al. Standards Track [Page 2]

RFC 7234 HTTP/1.1 Caching June 2014

Table of Contents

1 Introduction...5

1.1 Conformance and Error Handling...5

1.2 Syntax Notation... 5
 1.2.1 Delta Seconds... 5

2 Overview of Cache Operation...6

3 Storing Responses in Caches...7

3.1 Storing Incomplete Responses.. 7

3.2 Storing Responses to Authenticated Requests.. 7

3.3 Combining Partial Content..8

4 Constructing Responses from Caches.. 9

4.1 Calculating Secondary Keys with Vary..9

4.2 Freshness..10
 4.2.1 Calculating Freshness Lifetime.. 11
 4.2.2 Calculating Heuristic Freshness... 11
 4.2.3 Calculating Age.. 11
 4.2.4 Serving Stale Responses...12

4.3 Validation...13
 4.3.1 Sending a Validation Request.. 13
 4.3.2 Handling a Received Validation Request.. 13
 4.3.3 Handling a Validation Response..14
 4.3.4 Freshening Stored Responses upon Validation..14
 4.3.5 Freshening Responses via HEAD.. 14

4.4 Invalidation.. 15

5 Header Field Definitions.. 16

5.1 Age... 16

5.2 Cache-Control.. 16
 5.2.1 Request Cache-Control Directives... 16
 5.2.2 Response Cache-Control Directives...17
 5.2.3 Cache Control Extensions.. 19

5.3 Expires... 20

5.4 Pragma... 20

5.5 Warning..21
 5.5.1 Warning: 110 - "Response is Stale"...22
 5.5.2 Warning: 111 - "Revalidation Failed"... 22
 5.5.3 Warning: 112 - "Disconnected Operation".. 22
 5.5.4 Warning: 113 - "Heuristic Expiration".. 22
 5.5.5 Warning: 199 - "Miscellaneous Warning"...22
 5.5.6 Warning: 214 - "Transformation Applied".. 23
 5.5.7 Warning: 299 - "Miscellaneous Persistent Warning".. 23

6 History Lists.. 24

Fielding, et al. Standards Track [Page 3]

RFC 7234 HTTP/1.1 Caching June 2014

7 IANA Considerations... 25

7.1 Cache Directive Registry...25
 7.1.1 Procedure.. 25
 7.1.2 Considerations for New Cache Control Directives..25
 7.1.3 Registrations..25

7.2 Warn Code Registry.. 25
 7.2.1 Procedure.. 25
 7.2.2 Registrations..26

7.3 Header Field Registration..26

8 Security Considerations... 27

9 Acknowledgments... 28

10 References.. 29

10.1 Normative References... 29

10.2 Informative References..29

Appendix A Changes from RFC 2616...30

Appendix B Imported ABNF..31

Appendix C Collected ABNF..32

Index...33

Authors' Addresses...35

Fielding, et al. Standards Track [Page 4]

RFC 7234 HTTP/1.1 Caching June 2014

1. Introduction

HTTP is typically used for distributed information systems, where performance can be improved by the use of
response caches. This document defines aspects of HTTP/1.1 related to caching and reusing response messages.

An HTTP cache is a local store of response messages and the subsystem that controls storage, retrieval, and
deletion of messages in it. A cache stores cacheable responses in order to reduce the response time and network
bandwidth consumption on future, equivalent requests. Any client or server MAY employ a cache, though a
cache cannot be used by a server that is acting as a tunnel.

A shared cache is a cache that stores responses to be reused by more than one user; shared caches are usually
(but not always) deployed as a part of an intermediary. A private cache, in contrast, is dedicated to a single
user; often, they are deployed as a component of a user agent.

The goal of caching in HTTP/1.1 is to significantly improve performance by reusing a prior response message
to satisfy a current request. A stored response is considered "fresh", as defined in Section 4.2, if the response
can be reused without "validation" (checking with the origin server to see if the cached response remains
valid for this request). A fresh response can therefore reduce both latency and network overhead each time it
is reused. When a cached response is not fresh, it might still be reusable if it can be freshened by validation
(Section 4.3) or if the origin is unavailable (Section 4.2.4).

1.1. Conformance and Error Handling

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

Conformance criteria and considerations regarding error handling are defined in Section 2.5 of [RFC7230].

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF) notation of [RFC5234] with a list
extension, defined in Section 7 of [RFC7230], that allows for compact definition of comma-separated lists
using a '#' operator (similar to how the '*' operator indicates repetition). Appendix B describes rules imported
from other documents. Appendix C shows the collected grammar with all list operators expanded to standard
ABNF notation.

1.2.1. Delta Seconds

The delta-seconds rule specifies a non-negative integer, representing time in seconds.

 delta-seconds = 1*DIGIT

A recipient parsing a delta-seconds value and converting it to binary form ought to use an arithmetic type of at
least 31 bits of non-negative integer range. If a cache receives a delta-seconds value greater than the greatest
integer it can represent, or if any of its subsequent calculations overflows, the cache MUST consider the value
to be either 2147483648 (231) or the greatest positive integer it can conveniently represent.

Note: The value 2147483648 is here for historical reasons, effectively represents infinity (over 68 years),
and does not need to be stored in binary form; an implementation could produce it as a canned string if
any overflow occurs, even if the calculations are performed with an arithmetic type incapable of directly
representing that number. What matters here is that an overflow be detected and not treated as a negative
value in later calculations.

Fielding, et al. Standards Track [Page 5]

rfc7230.html#conformance
rfc7230.html#abnf.extension

RFC 7234 HTTP/1.1 Caching June 2014

2. Overview of Cache Operation

Proper cache operation preserves the semantics of HTTP transfers ([RFC7231]) while eliminating the transfer
of information already held in the cache. Although caching is an entirely OPTIONAL feature of HTTP, it can
be assumed that reusing a cached response is desirable and that such reuse is the default behavior when no
requirement or local configuration prevents it. Therefore, HTTP cache requirements are focused on preventing
a cache from either storing a non-reusable response or reusing a stored response inappropriately, rather than
mandating that caches always store and reuse particular responses.

Each cache entry consists of a cache key and one or more HTTP responses corresponding to prior requests that
used the same key. The most common form of cache entry is a successful result of a retrieval request: i.e., a 200
(OK) response to a GET request, which contains a representation of the resource identified by the request target
(Section 4.3.1 of [RFC7231]). However, it is also possible to cache permanent redirects, negative results (e.g.,
404 (Not Found)), incomplete results (e.g., 206 (Partial Content)), and responses to methods other than GET if
the method's definition allows such caching and defines something suitable for use as a cache key.

The primary cache key consists of the request method and target URI. However, since HTTP caches in
common use today are typically limited to caching responses to GET, many caches simply decline other
methods and use only the URI as the primary cache key.

If a request target is subject to content negotiation, its cache entry might consist of multiple stored responses,
each differentiated by a secondary key for the values of the original request's selecting header fields (Section
4.1).

Fielding, et al. Standards Track [Page 6]

rfc7231.html#GET

RFC 7234 HTTP/1.1 Caching June 2014

3. Storing Responses in Caches

A cache MUST NOT store a response to any request, unless:

• The request method is understood by the cache and defined as being cacheable, and

• the response status code is understood by the cache, and

• the "no-store" cache directive (see Section 5.2) does not appear in request or response header fields, and

• the "private" response directive (see Section 5.2.2.6) does not appear in the response, if the cache is shared,
and

• the Authorization header field (see Section 4.2 of [RFC7235]) does not appear in the request, if the cache is
shared, unless the response explicitly allows it (see Section 3.2), and

• the response either:

• contains an Expires header field (see Section 5.3), or

• contains a max-age response directive (see Section 5.2.2.8), or

• contains a s-maxage response directive (see Section 5.2.2.9) and the cache is shared, or

• contains a Cache Control Extension (see Section 5.2.3) that allows it to be cached, or

• has a status code that is defined as cacheable by default (see Section 4.2.2), or

• contains a public response directive (see Section 5.2.2.5).

Note that any of the requirements listed above can be overridden by a cache-control extension; see Section
5.2.3.

In this context, a cache has "understood" a request method or a response status code if it recognizes it and
implements all specified caching-related behavior.

Note that, in normal operation, some caches will not store a response that has neither a cache validator nor an
explicit expiration time, as such responses are not usually useful to store. However, caches are not prohibited
from storing such responses.

3.1. Storing Incomplete Responses

A response message is considered complete when all of the octets indicated by the message framing
([RFC7230]) are received prior to the connection being closed. If the request method is GET, the response
status code is 200 (OK), and the entire response header section has been received, a cache MAY store an
incomplete response message body if the cache entry is recorded as incomplete. Likewise, a 206 (Partial
Content) response MAY be stored as if it were an incomplete 200 (OK) cache entry. However, a cache MUST
NOT store incomplete or partial-content responses if it does not support the Range and Content-Range header
fields or if it does not understand the range units used in those fields.

A cache MAY complete a stored incomplete response by making a subsequent range request ([RFC7233])
and combining the successful response with the stored entry, as defined in Section 3.3. A cache MUST NOT
use an incomplete response to answer requests unless the response has been made complete or the request is
partial and specifies a range that is wholly within the incomplete response. A cache MUST NOT send a partial
response to a client without explicitly marking it as such using the 206 (Partial Content) status code.

3.2. Storing Responses to Authenticated Requests

A shared cache MUST NOT use a cached response to a request with an Authorization header field (Section
4.2 of [RFC7235]) to satisfy any subsequent request unless a cache directive that allows such responses to be
stored is present in the response.

In this specification, the following Cache-Control response directives (Section 5.2.2) have such an effect: must-
revalidate, public, and s-maxage.

Note that cached responses that contain the "must-revalidate" and/or "s-maxage" response directives are not
allowed to be served stale (Section 4.2.4) by shared caches. In particular, a response with either "max-age=0,

Fielding, et al. Standards Track [Page 7]

rfc7235.html#header.authorization
rfc7235.html#header.authorization
rfc7235.html#header.authorization

RFC 7234 HTTP/1.1 Caching June 2014

must-revalidate" or "s-maxage=0" cannot be used to satisfy a subsequent request without revalidating it on the
origin server.

3.3. Combining Partial Content

A response might transfer only a partial representation if the connection closed prematurely or if the request
used one or more Range specifiers ([RFC7233]). After several such transfers, a cache might have received
several ranges of the same representation. A cache MAY combine these ranges into a single stored response,
and reuse that response to satisfy later requests, if they all share the same strong validator and the cache
complies with the client requirements in Section 4.3 of [RFC7233].

When combining the new response with one or more stored responses, a cache MUST:

• delete any Warning header fields in the stored response with warn-code 1xx (see Section 5.5);

• retain any Warning header fields in the stored response with warn-code 2xx; and,

• use other header fields provided in the new response, aside from Content-Range, to replace all instances of
the corresponding header fields in the stored response.

Fielding, et al. Standards Track [Page 8]

rfc7233.html#combining.byte.ranges

RFC 7234 HTTP/1.1 Caching June 2014

4. Constructing Responses from Caches

When presented with a request, a cache MUST NOT reuse a stored response, unless:

• The presented effective request URI (Section 5.5 of [RFC7230]) and that of the stored response match, and

• the request method associated with the stored response allows it to be used for the presented request, and

• selecting header fields nominated by the stored response (if any) match those presented (see Section 4.1),
and

• the presented request does not contain the no-cache pragma (Section 5.4), nor the no-cache cache directive
(Section 5.2.1), unless the stored response is successfully validated (Section 4.3), and

• the stored response does not contain the no-cache cache directive (Section 5.2.2.2), unless it is successfully
validated (Section 4.3), and

• the stored response is either:

• fresh (see Section 4.2), or

• allowed to be served stale (see Section 4.2.4), or

• successfully validated (see Section 4.3).

Note that any of the requirements listed above can be overridden by a cache-control extension; see Section
5.2.3.

When a stored response is used to satisfy a request without validation, a cache MUST generate an Age
header field (Section 5.1), replacing any present in the response with a value equal to the stored response's
current_age; see Section 4.2.3.

A cache MUST write through requests with methods that are unsafe (Section 4.2.1 of [RFC7231]) to the origin
server; i.e., a cache is not allowed to generate a reply to such a request before having forwarded the request and
having received a corresponding response.

Also, note that unsafe requests might invalidate already-stored responses; see Section 4.4.

When more than one suitable response is stored, a cache MUST use the most recent response (as determined
by the Date header field). It can also forward the request with "Cache-Control: max-age=0" or "Cache-Control:
no-cache" to disambiguate which response to use.

A cache that does not have a clock available MUST NOT use stored responses without revalidating them upon
every use.

4.1. Calculating Secondary Keys with Vary

When a cache receives a request that can be satisfied by a stored response that has a Vary header field (Section
7.1.4 of [RFC7231]), it MUST NOT use that response unless all of the selecting header fields nominated by
the Vary header field match in both the original request (i.e., that associated with the stored response), and the
presented request.

The selecting header fields from two requests are defined to match if and only if those in the first request can be
transformed to those in the second request by applying any of the following:

• adding or removing whitespace, where allowed in the header field's syntax

• combining multiple header fields with the same field name (see Section 3.2 of [RFC7230])

• normalizing both header field values in a way that is known to have identical semantics, according to the
header field's specification (e.g., reordering field values when order is not significant; case-normalization,
where values are defined to be case-insensitive)

If (after any normalization that might take place) a header field is absent from a request, it can only match
another request if it is also absent there.

A Vary header field-value of "*" always fails to match.

The stored response with matching selecting header fields is known as the selected response.

Fielding, et al. Standards Track [Page 9]

rfc7230.html#effective.request.uri
rfc7231.html#safe.methods
rfc7231.html#header.vary
rfc7231.html#header.vary
rfc7230.html#header.fields

RFC 7234 HTTP/1.1 Caching June 2014

If multiple selected responses are available (potentially including responses without a Vary header field), the
cache will need to choose one to use. When a selecting header field has a known mechanism for doing so
(e.g., qvalues on Accept and similar request header fields), that mechanism MAY be used to select preferred
responses; of the remainder, the most recent response (as determined by the Date header field) is used, as per
Section 4.

If no selected response is available, the cache cannot satisfy the presented request. Typically, it is forwarded to
the origin server in a (possibly conditional; see Section 4.3) request.

4.2. Freshness

A fresh response is one whose age has not yet exceeded its freshness lifetime. Conversely, a stale response is
one where it has.

A response's freshness lifetime is the length of time between its generation by the origin server and its
expiration time. An explicit expiration time is the time at which the origin server intends that a stored response
can no longer be used by a cache without further validation, whereas a heuristic expiration time is assigned by
a cache when no explicit expiration time is available.

A response's age is the time that has passed since it was generated by, or successfully validated with, the origin
server.

When a response is "fresh" in the cache, it can be used to satisfy subsequent requests without contacting the
origin server, thereby improving efficiency.

The primary mechanism for determining freshness is for an origin server to provide an explicit expiration time
in the future, using either the Expires header field (Section 5.3) or the max-age response directive (Section
5.2.2.8). Generally, origin servers will assign future explicit expiration times to responses in the belief that the
representation is not likely to change in a semantically significant way before the expiration time is reached.

If an origin server wishes to force a cache to validate every request, it can assign an explicit expiration time in
the past to indicate that the response is already stale. Compliant caches will normally validate a stale cached
response before reusing it for subsequent requests (see Section 4.2.4).

Since origin servers do not always provide explicit expiration times, caches are also allowed to use a heuristic
to determine an expiration time under certain circumstances (see Section 4.2.2).

The calculation to determine if a response is fresh is:

 response_is_fresh = (freshness_lifetime > current_age)

freshness_lifetime is defined in Section 4.2.1; current_age is defined in Section 4.2.3.

Clients can send the max-age or min-fresh cache directives in a request to constrain or relax freshness
calculations for the corresponding response (Section 5.2.1).

When calculating freshness, to avoid common problems in date parsing:

• Although all date formats are specified to be case-sensitive, a cache recipient SHOULD match day, week,
and time-zone names case-insensitively.

• If a cache recipient's internal implementation of time has less resolution than the value of an HTTP-date,
the recipient MUST internally represent a parsed Expires date as the nearest time equal to or earlier than the
received value.

• A cache recipient MUST NOT allow local time zones to influence the calculation or comparison of an age
or expiration time.

• A cache recipient SHOULD consider a date with a zone abbreviation other than GMT or UTC to be invalid
for calculating expiration.

Fielding, et al. Standards Track [Page 10]

RFC 7234 HTTP/1.1 Caching June 2014

Note that freshness applies only to cache operation; it cannot be used to force a user agent to refresh its
display or reload a resource. See Section 6 for an explanation of the difference between caches and history
mechanisms.

4.2.1. Calculating Freshness Lifetime

A cache can calculate the freshness lifetime (denoted as freshness_lifetime) of a response by using the first
match of the following:

• If the cache is shared and the s-maxage response directive (Section 5.2.2.9) is present, use its value, or

• If the max-age response directive (Section 5.2.2.8) is present, use its value, or

• If the Expires response header field (Section 5.3) is present, use its value minus the value of the Date
response header field, or

• Otherwise, no explicit expiration time is present in the response. A heuristic freshness lifetime might be
applicable; see Section 4.2.2.

Note that this calculation is not vulnerable to clock skew, since all of the information comes from the origin
server.

When there is more than one value present for a given directive (e.g., two Expires header fields, multiple
Cache-Control: max-age directives), the directive's value is considered invalid. Caches are encouraged to
consider responses that have invalid freshness information to be stale.

4.2.2. Calculating Heuristic Freshness

Since origin servers do not always provide explicit expiration times, a cache MAY assign a heuristic expiration
time when an explicit time is not specified, employing algorithms that use other header field values (such as
the Last-Modified time) to estimate a plausible expiration time. This specification does not provide specific
algorithms, but does impose worst-case constraints on their results.

A cache MUST NOT use heuristics to determine freshness when an explicit expiration time is present in the
stored response. Because of the requirements in Section 3, this means that, effectively, heuristics can only
be used on responses without explicit freshness whose status codes are defined as cacheable by default (see
Section 6.1 of [RFC7231]), and those responses without explicit freshness that have been marked as explicitly
cacheable (e.g., with a "public" response directive).

If the response has a Last-Modified header field (Section 2.2 of [RFC7232]), caches are encouraged to use a
heuristic expiration value that is no more than some fraction of the interval since that time. A typical setting of
this fraction might be 10%.

When a heuristic is used to calculate freshness lifetime, a cache SHOULD generate a Warning header field
with a 113 warn-code (see Section 5.5.4) in the response if its current_age is more than 24 hours and such a
warning is not already present.

Note: Section 13.9 of [RFC2616] prohibited caches from calculating heuristic freshness for URIs with
query components (i.e., those containing '?'). In practice, this has not been widely implemented. Therefore,
origin servers are encouraged to send explicit directives (e.g., Cache-Control: no-cache) if they wish to
preclude caching.

4.2.3. Calculating Age

The Age header field is used to convey an estimated age of the response message when obtained from a cache.
The Age field value is the cache's estimate of the number of seconds since the response was generated or
validated by the origin server. In essence, the Age value is the sum of the time that the response has been
resident in each of the caches along the path from the origin server, plus the amount of time it has been in
transit along network paths.

The following data is used for the age calculation:

age_value

Fielding, et al. Standards Track [Page 11]

rfc7231.html#overview.of.status.codes
rfc7232.html#header.last-modified
https://www.rfc-editor.org/rfc/rfc2616.html#section-13.9

RFC 7234 HTTP/1.1 Caching June 2014

The term "age_value" denotes the value of the Age header field (Section 5.1), in a form appropriate for
arithmetic operation; or 0, if not available.

date_value

The term "date_value" denotes the value of the Date header field, in a form appropriate for arithmetic
operations. See Section 7.1.1.2 of [RFC7231] for the definition of the Date header field, and for
requirements regarding responses without it.

now

The term "now" means "the current value of the clock at the host performing the calculation". A host
ought to use NTP ([RFC5905]) or some similar protocol to synchronize its clocks to Coordinated
Universal Time.

request_time

The current value of the clock at the host at the time the request resulting in the stored response was made.

response_time

The current value of the clock at the host at the time the response was received.

A response's age can be calculated in two entirely independent ways:

1. the "apparent_age": response_time minus date_value, if the local clock is reasonably well synchronized to
the origin server's clock. If the result is negative, the result is replaced by zero.

2. the "corrected_age_value", if all of the caches along the response path implement HTTP/1.1. A cache
MUST interpret this value relative to the time the request was initiated, not the time that the response was
received.

 apparent_age = max(0, response_time - date_value);

 response_delay = response_time - request_time;
 corrected_age_value = age_value + response_delay;

These are combined as

 corrected_initial_age = max(apparent_age, corrected_age_value);

unless the cache is confident in the value of the Age header field (e.g., because there are no HTTP/1.0 hops in
the Via header field), in which case the corrected_age_value MAY be used as the corrected_initial_age.

The current_age of a stored response can then be calculated by adding the amount of time (in seconds) since the
stored response was last validated by the origin server to the corrected_initial_age.

 resident_time = now - response_time;
 current_age = corrected_initial_age + resident_time;

4.2.4. Serving Stale Responses

A "stale" response is one that either has explicit expiry information or is allowed to have heuristic expiry
calculated, but is not fresh according to the calculations in Section 4.2.

A cache MUST NOT generate a stale response if it is prohibited by an explicit in-protocol directive (e.g., by
a "no-store" or "no-cache" cache directive, a "must-revalidate" cache-response-directive, or an applicable "s-
maxage" or "proxy-revalidate" cache-response-directive; see Section 5.2.2).

A cache MUST NOT send stale responses unless it is disconnected (i.e., it cannot contact the origin server or
otherwise find a forward path) or doing so is explicitly allowed (e.g., by the max-stale request directive; see
Section 5.2.1).

Fielding, et al. Standards Track [Page 12]

rfc7231.html#header.date

RFC 7234 HTTP/1.1 Caching June 2014

A cache SHOULD generate a Warning header field with the 110 warn-code (see Section 5.5.1) in stale
responses. Likewise, a cache SHOULD generate a 112 warn-code (see Section 5.5.3) in stale responses if the
cache is disconnected.

A cache SHOULD NOT generate a new Warning header field when forwarding a response that does not have
an Age header field, even if the response is already stale. A cache need not validate a response that merely
became stale in transit.

4.3. Validation

When a cache has one or more stored responses for a requested URI, but cannot serve any of them (e.g.,
because they are not fresh, or one cannot be selected; see Section 4.1), it can use the conditional request
mechanism [RFC7232] in the forwarded request to give the next inbound server an opportunity to select a valid
stored response to use, updating the stored metadata in the process, or to replace the stored response(s) with a
new response. This process is known as "validating" or "revalidating" the stored response.

4.3.1. Sending a Validation Request

When sending a conditional request for cache validation, a cache sends one or more precondition header fields
containing validator metadata from its stored response(s), which is then compared by recipients to determine
whether a stored response is equivalent to a current representation of the resource.

One such validator is the timestamp given in a Last-Modified header field (Section 2.2 of [RFC7232]), which
can be used in an If-Modified-Since header field for response validation, or in an If-Unmodified-Since or If-
Range header field for representation selection (i.e., the client is referring specifically to a previously obtained
representation with that timestamp).

Another validator is the entity-tag given in an ETag header field (Section 2.3 of [RFC7232]). One or more
entity-tags, indicating one or more stored responses, can be used in an If-None-Match header field for response
validation, or in an If-Match or If-Range header field for representation selection (i.e., the client is referring
specifically to one or more previously obtained representations with the listed entity-tags).

4.3.2. Handling a Received Validation Request

Each client in the request chain may have its own cache, so it is common for a cache at an intermediary to
receive conditional requests from other (outbound) caches. Likewise, some user agents make use of conditional
requests to limit data transfers to recently modified representations or to complete the transfer of a partially
retrieved representation.

If a cache receives a request that can be satisfied by reusing one of its stored 200 (OK) or 206 (Partial Content)
responses, the cache SHOULD evaluate any applicable conditional header field preconditions received in that
request with respect to the corresponding validators contained within the selected response. A cache MUST
NOT evaluate conditional header fields that are only applicable to an origin server, found in a request with
semantics that cannot be satisfied with a cached response, or applied to a target resource for which it has no
stored responses; such preconditions are likely intended for some other (inbound) server.

The proper evaluation of conditional requests by a cache depends on the received precondition header fields
and their precedence, as defined in Section 6 of [RFC7232]. The If-Match and If-Unmodified-Since conditional
header fields are not applicable to a cache.

A request containing an If-None-Match header field (Section 3.2 of [RFC7232]) indicates that the client wants
to validate one or more of its own stored responses in comparison to whichever stored response is selected by
the cache. If the field-value is "*", or if the field-value is a list of entity-tags and at least one of them matches
the entity-tag of the selected stored response, a cache recipient SHOULD generate a 304 (Not Modified)
response (using the metadata of the selected stored response) instead of sending that stored response.

When a cache decides to revalidate its own stored responses for a request that contains an If-None-Match list
of entity-tags, the cache MAY combine the received list with a list of entity-tags from its own stored set of
responses (fresh or stale) and send the union of the two lists as a replacement If-None-Match header field value

Fielding, et al. Standards Track [Page 13]

rfc7232.html#header.last-modified
rfc7232.html#header.etag
rfc7232.html#precedence
rfc7232.html#header.if-none-match

RFC 7234 HTTP/1.1 Caching June 2014

in the forwarded request. If a stored response contains only partial content, the cache MUST NOT include
its entity-tag in the union unless the request is for a range that would be fully satisfied by that partial stored
response. If the response to the forwarded request is 304 (Not Modified) and has an ETag header field value
with an entity-tag that is not in the client's list, the cache MUST generate a 200 (OK) response for the client by
reusing its corresponding stored response, as updated by the 304 response metadata (Section 4.3.4).

If an If-None-Match header field is not present, a request containing an If-Modified-Since header field (Section
3.3 of [RFC7232]) indicates that the client wants to validate one or more of its own stored responses by
modification date. A cache recipient SHOULD generate a 304 (Not Modified) response (using the metadata
of the selected stored response) if one of the following cases is true: 1) the selected stored response has a
Last-Modified field-value that is earlier than or equal to the conditional timestamp; 2) no Last-Modified
field is present in the selected stored response, but it has a Date field-value that is earlier than or equal to the
conditional timestamp; or, 3) neither Last-Modified nor Date is present in the selected stored response, but the
cache recorded it as having been received at a time earlier than or equal to the conditional timestamp.

A cache that implements partial responses to range requests, as defined in [RFC7233], also needs to evaluate a
received If-Range header field (Section 3.2 of [RFC7233]) with respect to its selected stored response.

4.3.3. Handling a Validation Response

Cache handling of a response to a conditional request is dependent upon its status code:

• A 304 (Not Modified) response status code indicates that the stored response can be updated and reused;
see Section 4.3.4.

• A full response (i.e., one with a payload body) indicates that none of the stored responses nominated in the
conditional request is suitable. Instead, the cache MUST use the full response to satisfy the request and
MAY replace the stored response(s).

• However, if a cache receives a 5xx (Server Error) response while attempting to validate a response, it can
either forward this response to the requesting client, or act as if the server failed to respond. In the latter
case, the cache MAY send a previously stored response (see Section 4.2.4).

4.3.4. Freshening Stored Responses upon Validation

When a cache receives a 304 (Not Modified) response and already has one or more stored 200 (OK) responses
for the same cache key, the cache needs to identify which of the stored responses are updated by this new
response and then update the stored response(s) with the new information provided in the 304 response.

The stored response to update is identified by using the first match (if any) of the following:

• If the new response contains a strong validator (see Section 2.1 of [RFC7232]), then that strong validator
identifies the selected representation for update. All of the stored responses with the same strong validator
are selected. If none of the stored responses contain the same strong validator, then the cache MUST NOT
use the new response to update any stored responses.

• If the new response contains a weak validator and that validator corresponds to one of the cache's stored
responses, then the most recent of those matching stored responses is selected for update.

• If the new response does not include any form of validator (such as in the case where a client generates
an If-Modified-Since request from a source other than the Last-Modified response header field), and there
is only one stored response, and that stored response also lacks a validator, then that stored response is
selected for update.

If a stored response is selected for update, the cache MUST:

• delete any Warning header fields in the stored response with warn-code 1xx (see Section 5.5);

• retain any Warning header fields in the stored response with warn-code 2xx; and,

• use other header fields provided in the 304 (Not Modified) response to replace all instances of the
corresponding header fields in the stored response.

Fielding, et al. Standards Track [Page 14]

rfc7232.html#header.if-modified-since
rfc7232.html#header.if-modified-since
rfc7233.html#header.if-range
rfc7232.html#weak.and.strong.validators

RFC 7234 HTTP/1.1 Caching June 2014

4.3.5. Freshening Responses via HEAD

A response to the HEAD method is identical to what an equivalent request made with a GET would have
been, except it lacks a body. This property of HEAD responses can be used to invalidate or update a cached
GET response if the more efficient conditional GET request mechanism is not available (due to no validators
being present in the stored response) or if transmission of the representation body is not desired even if it has
changed.

When a cache makes an inbound HEAD request for a given request target and receives a 200 (OK) response,
the cache SHOULD update or invalidate each of its stored GET responses that could have been selected for that
request (see Section 4.1).

For each of the stored responses that could have been selected, if the stored response and HEAD response
have matching values for any received validator fields (ETag and Last-Modified) and, if the HEAD response
has a Content-Length header field, the value of Content-Length matches that of the stored response, the cache
SHOULD update the stored response as described below; otherwise, the cache SHOULD consider the stored
response to be stale.

If a cache updates a stored response with the metadata provided in a HEAD response, the cache MUST:

• delete any Warning header fields in the stored response with warn-code 1xx (see Section 5.5);

• retain any Warning header fields in the stored response with warn-code 2xx; and,

• use other header fields provided in the HEAD response to replace all instances of the corresponding header
fields in the stored response and append new header fields to the stored response's header section unless
otherwise restricted by the Cache-Control header field.

4.4. Invalidation

Because unsafe request methods (Section 4.2.1 of [RFC7231]) such as PUT, POST or DELETE have the
potential for changing state on the origin server, intervening caches can use them to keep their contents up to
date.

A cache MUST invalidate the effective Request URI (Section 5.5 of [RFC7230]) as well as the URI(s) in the
Location and Content-Location response header fields (if present) when a non-error status code is received in
response to an unsafe request method.

However, a cache MUST NOT invalidate a URI from a Location or Content-Location response header field
if the host part of that URI differs from the host part in the effective request URI (Section 5.5 of [RFC7230]).
This helps prevent denial-of-service attacks.

A cache MUST invalidate the effective request URI (Section 5.5 of [RFC7230]) when it receives a non-error
response to a request with a method whose safety is unknown.

Here, a "non-error response" is one with a 2xx (Successful) or 3xx (Redirection) status code. "Invalidate"
means that the cache will either remove all stored responses related to the effective request URI or will mark
these as "invalid" and in need of a mandatory validation before they can be sent in response to a subsequent
request.

Note that this does not guarantee that all appropriate responses are invalidated. For example, a state-changing
request might invalidate responses in the caches it travels through, but relevant responses still might be stored
in other caches that it has not.

Fielding, et al. Standards Track [Page 15]

rfc7231.html#safe.methods
rfc7230.html#effective.request.uri
rfc7230.html#effective.request.uri
rfc7230.html#effective.request.uri

RFC 7234 HTTP/1.1 Caching June 2014

5. Header Field Definitions

This section defines the syntax and semantics of HTTP/1.1 header fields related to caching.

5.1. Age

The "Age" header field conveys the sender's estimate of the amount of time since the response was generated or
successfully validated at the origin server. Age values are calculated as specified in Section 4.2.3.

 Age = delta-seconds

The Age field-value is a non-negative integer, representing time in seconds (see Section 1.2.1).

The presence of an Age header field implies that the response was not generated or validated by the origin
server for this request. However, lack of an Age header field does not imply the origin was contacted, since the
response might have been received from an HTTP/1.0 cache that does not implement Age.

5.2. Cache-Control

The "Cache-Control" header field is used to specify directives for caches along the request/response chain.
Such cache directives are unidirectional in that the presence of a directive in a request does not imply that the
same directive is to be given in the response.

A cache MUST obey the requirements of the Cache-Control directives defined in this section. See Section 5.2.3
for information about how Cache-Control directives defined elsewhere are handled.

Note: Some HTTP/1.0 caches might not implement Cache-Control.

A proxy, whether or not it implements a cache, MUST pass cache directives through in forwarded messages,
regardless of their significance to that application, since the directives might be applicable to all recipients
along the request/response chain. It is not possible to target a directive to a specific cache.

Cache directives are identified by a token, to be compared case-insensitively, and have an optional argument,
that can use both token and quoted-string syntax. For the directives defined below that define arguments,
recipients ought to accept both forms, even if one is documented to be preferred. For any directive not defined
by this specification, a recipient MUST accept both forms.

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

For the cache directives defined below, no argument is defined (nor allowed) unless stated otherwise.

5.2.1. Request Cache-Control Directives

5.2.1.1. max-age

Argument syntax:

delta-seconds (see Section 1.2.1)

The "max-age" request directive indicates that the client is unwilling to accept a response whose age is greater
than the specified number of seconds. Unless the max-stale request directive is also present, the client is not
willing to accept a stale response.

This directive uses the token form of the argument syntax: e.g., 'max-age=5' not 'max-age="5"'. A sender
SHOULD NOT generate the quoted-string form.

5.2.1.2. max-stale

Fielding, et al. Standards Track [Page 16]

RFC 7234 HTTP/1.1 Caching June 2014

Argument syntax:

delta-seconds (see Section 1.2.1)

The "max-stale" request directive indicates that the client is willing to accept a response that has exceeded
its freshness lifetime. If max-stale is assigned a value, then the client is willing to accept a response that has
exceeded its freshness lifetime by no more than the specified number of seconds. If no value is assigned to
max-stale, then the client is willing to accept a stale response of any age.

This directive uses the token form of the argument syntax: e.g., 'max-stale=10' not 'max-stale="10"'. A sender
SHOULD NOT generate the quoted-string form.

5.2.1.3. min-fresh

Argument syntax:

delta-seconds (see Section 1.2.1)

The "min-fresh" request directive indicates that the client is willing to accept a response whose freshness
lifetime is no less than its current age plus the specified time in seconds. That is, the client wants a response
that will still be fresh for at least the specified number of seconds.

This directive uses the token form of the argument syntax: e.g., 'min-fresh=20' not 'min-fresh="20"'. A sender
SHOULD NOT generate the quoted-string form.

5.2.1.4. no-cache

The "no-cache" request directive indicates that a cache MUST NOT use a stored response to satisfy the request
without successful validation on the origin server.

5.2.1.5. no-store

The "no-store" request directive indicates that a cache MUST NOT store any part of either this request or any
response to it. This directive applies to both private and shared caches. "MUST NOT store" in this context
means that the cache MUST NOT intentionally store the information in non-volatile storage, and MUST make
a best-effort attempt to remove the information from volatile storage as promptly as possible after forwarding
it.

This directive is NOT a reliable or sufficient mechanism for ensuring privacy. In particular, malicious or
compromised caches might not recognize or obey this directive, and communications networks might be
vulnerable to eavesdropping.

Note that if a request containing this directive is satisfied from a cache, the no-store request directive does not
apply to the already stored response.

5.2.1.6. no-transform

The "no-transform" request directive indicates that an intermediary (whether or not it implements a cache)
MUST NOT transform the payload, as defined in Section 5.7.2 of [RFC7230].

5.2.1.7. only-if-cached

The "only-if-cached" request directive indicates that the client only wishes to obtain a stored response. If it
receives this directive, a cache SHOULD either respond using a stored response that is consistent with the other
constraints of the request, or respond with a 504 (Gateway Timeout) status code. If a group of caches is being
operated as a unified system with good internal connectivity, a member cache MAY forward such a request
within that group of caches.

5.2.2. Response Cache-Control Directives

Fielding, et al. Standards Track [Page 17]

rfc7230.html#message.transformations

RFC 7234 HTTP/1.1 Caching June 2014

5.2.2.1. must-revalidate

The "must-revalidate" response directive indicates that once it has become stale, a cache MUST NOT use the
response to satisfy subsequent requests without successful validation on the origin server.

The must-revalidate directive is necessary to support reliable operation for certain protocol features. In all
circumstances a cache MUST obey the must-revalidate directive; in particular, if a cache cannot reach the
origin server for any reason, it MUST generate a 504 (Gateway Timeout) response.

The must-revalidate directive ought to be used by servers if and only if failure to validate a request on the
representation could result in incorrect operation, such as a silently unexecuted financial transaction.

5.2.2.2. no-cache

Argument syntax:

#field-name

The "no-cache" response directive indicates that the response MUST NOT be used to satisfy a subsequent
request without successful validation on the origin server. This allows an origin server to prevent a cache
from using it to satisfy a request without contacting it, even by caches that have been configured to send stale
responses.

If the no-cache response directive specifies one or more field-names, then a cache MAY use the response to
satisfy a subsequent request, subject to any other restrictions on caching. However, any header fields in the
response that have the field-name(s) listed MUST NOT be sent in the response to a subsequent request without
successful revalidation with the origin server. This allows an origin server to prevent the re-use of certain
header fields in a response, while still allowing caching of the rest of the response.

The field-names given are not limited to the set of header fields defined by this specification. Field names are
case-insensitive.

This directive uses the quoted-string form of the argument syntax. A sender SHOULD NOT generate the token
form (even if quoting appears not to be needed for single-entry lists).

Note: Although it has been back-ported to many implementations, some HTTP/1.0 caches will not recognize
or obey this directive. Also, no-cache response directives with field-names are often handled by caches as if
an unqualified no-cache directive was received; i.e., the special handling for the qualified form is not widely
implemented.

5.2.2.3. no-store

The "no-store" response directive indicates that a cache MUST NOT store any part of either the immediate
request or response. This directive applies to both private and shared caches. "MUST NOT store" in this
context means that the cache MUST NOT intentionally store the information in non-volatile storage, and
MUST make a best-effort attempt to remove the information from volatile storage as promptly as possible after
forwarding it.

This directive is NOT a reliable or sufficient mechanism for ensuring privacy. In particular, malicious or
compromised caches might not recognize or obey this directive, and communications networks might be
vulnerable to eavesdropping.

5.2.2.4. no-transform

The "no-transform" response directive indicates that an intermediary (regardless of whether it implements a
cache) MUST NOT transform the payload, as defined in Section 5.7.2 of [RFC7230].

5.2.2.5. public

Fielding, et al. Standards Track [Page 18]

rfc7230.html#message.transformations

RFC 7234 HTTP/1.1 Caching June 2014

The "public" response directive indicates that any cache MAY store the response, even if the response would
normally be non-cacheable or cacheable only within a private cache. (See Section 3.2 for additional details
related to the use of public in response to a request containing Authorization, and Section 3 for details of
how public affects responses that would normally not be stored, due to their status codes not being defined as
cacheable by default; see Section 4.2.2.)

5.2.2.6. private

Argument syntax:

#field-name

The "private" response directive indicates that the response message is intended for a single user and MUST
NOT be stored by a shared cache. A private cache MAY store the response and reuse it for later requests, even
if the response would normally be non-cacheable.

If the private response directive specifies one or more field-names, this requirement is limited to the field-
values associated with the listed response header fields. That is, a shared cache MUST NOT store the specified
field-names(s), whereas it MAY store the remainder of the response message.

The field-names given are not limited to the set of header fields defined by this specification. Field names are
case-insensitive.

This directive uses the quoted-string form of the argument syntax. A sender SHOULD NOT generate the token
form (even if quoting appears not to be needed for single-entry lists).

Note: This usage of the word "private" only controls where the response can be stored; it cannot ensure the
privacy of the message content. Also, private response directives with field-names are often handled by caches
as if an unqualified private directive was received; i.e., the special handling for the qualified form is not widely
implemented.

5.2.2.7. proxy-revalidate

The "proxy-revalidate" response directive has the same meaning as the must-revalidate response directive,
except that it does not apply to private caches.

5.2.2.8. max-age

Argument syntax:

delta-seconds (see Section 1.2.1)

The "max-age" response directive indicates that the response is to be considered stale after its age is greater
than the specified number of seconds.

This directive uses the token form of the argument syntax: e.g., 'max-age=5' not 'max-age="5"'. A sender
SHOULD NOT generate the quoted-string form.

5.2.2.9. s-maxage

Argument syntax:

delta-seconds (see Section 1.2.1)

The "s-maxage" response directive indicates that, in shared caches, the maximum age specified by this directive
overrides the maximum age specified by either the max-age directive or the Expires header field. The s-maxage
directive also implies the semantics of the proxy-revalidate response directive.

This directive uses the token form of the argument syntax: e.g., 's-maxage=10' not 's-maxage="10"'. A sender
SHOULD NOT generate the quoted-string form.

Fielding, et al. Standards Track [Page 19]

RFC 7234 HTTP/1.1 Caching June 2014

5.2.3. Cache Control Extensions

The Cache-Control header field can be extended through the use of one or more cache-extension tokens, each
with an optional value. A cache MUST ignore unrecognized cache directives.

Informational extensions (those that do not require a change in cache behavior) can be added without changing
the semantics of other directives.

Behavioral extensions are designed to work by acting as modifiers to the existing base of cache directives.
Both the new directive and the old directive are supplied, such that applications that do not understand the new
directive will default to the behavior specified by the old directive, and those that understand the new directive
will recognize it as modifying the requirements associated with the old directive. In this way, extensions to the
existing cache-control directives can be made without breaking deployed caches.

For example, consider a hypothetical new response directive called "community" that acts as a modifier to
the private directive: in addition to private caches, any cache that is shared only by members of the named
community is allowed to cache the response. An origin server wishing to allow the UCI community to use an
otherwise private response in their shared cache(s) could do so by including

 Cache-Control: private, community="UCI"

A cache that recognizes such a community cache-extension could broaden its behavior in accordance with that
extension. A cache that does not recognize the community cache-extension would ignore it and adhere to the
private directive.

5.3. Expires

The "Expires" header field gives the date/time after which the response is considered stale. See Section 4.2 for
further discussion of the freshness model.

The presence of an Expires field does not imply that the original resource will change or cease to exist at,
before, or after that time.

The Expires value is an HTTP-date timestamp, as defined in Section 7.1.1.1 of [RFC7231].

 Expires = HTTP-date

For example

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

A cache recipient MUST interpret invalid date formats, especially the value "0", as representing a time in the
past (i.e., "already expired").

If a response includes a Cache-Control field with the max-age directive (Section 5.2.2.8), a recipient MUST
ignore the Expires field. Likewise, if a response includes the s-maxage directive (Section 5.2.2.9), a shared
cache recipient MUST ignore the Expires field. In both these cases, the value in Expires is only intended for
recipients that have not yet implemented the Cache-Control field.

An origin server without a clock MUST NOT generate an Expires field unless its value represents a fixed
time in the past (always expired) or its value has been associated with the resource by a system or user with a
reliable clock.

Historically, HTTP required the Expires field-value to be no more than a year in the future. While longer
freshness lifetimes are no longer prohibited, extremely large values have been demonstrated to cause problems
(e.g., clock overflows due to use of 32-bit integers for time values), and many caches will evict a response far
sooner than that.

5.4. Pragma

Fielding, et al. Standards Track [Page 20]

rfc7231.html#http.date

RFC 7234 HTTP/1.1 Caching June 2014

The "Pragma" header field allows backwards compatibility with HTTP/1.0 caches, so that clients can specify
a "no-cache" request that they will understand (as Cache-Control was not defined until HTTP/1.1). When the
Cache-Control header field is also present and understood in a request, Pragma is ignored.

In HTTP/1.0, Pragma was defined as an extensible field for implementation-specified directives for recipients.
This specification deprecates such extensions to improve interoperability.

 Pragma = 1#pragma-directive
 pragma-directive = "no-cache" / extension-pragma
 extension-pragma = token ["=" (token / quoted-string)]

When the Cache-Control header field is not present in a request, caches MUST consider the no-cache request
pragma-directive as having the same effect as if "Cache-Control: no-cache" were present (see Section 5.2.1).

When sending a no-cache request, a client ought to include both the pragma and cache-control directives,
unless Cache-Control: no-cache is purposefully omitted to target other Cache-Control response directives at
HTTP/1.1 caches. For example:

GET / HTTP/1.1
Host: www.example.com
Cache-Control: max-age=30
Pragma: no-cache

will constrain HTTP/1.1 caches to serve a response no older than 30 seconds, while precluding
implementations that do not understand Cache-Control from serving a cached response.

Note: Because the meaning of "Pragma: no-cache" in responses is not specified, it does not provide a
reliable replacement for "Cache-Control: no-cache" in them.

5.5. Warning

The "Warning" header field is used to carry additional information about the status or transformation of a
message that might not be reflected in the status code. This information is typically used to warn about possible
incorrectness introduced by caching operations or transformations applied to the payload of the message.

Warnings can be used for other purposes, both cache-related and otherwise. The use of a warning, rather than
an error status code, distinguishes these responses from true failures.

Warning header fields can in general be applied to any message, however some warn-codes are specific to
caches and can only be applied to response messages.

 Warning = 1#warning-value

 warning-value = warn-code SP warn-agent SP warn-text
 [SP warn-date]

 warn-code = 3DIGIT
 warn-agent = (uri-host [":" port]) / pseudonym
 ; the name or pseudonym of the server adding
 ; the Warning header field, for use in debugging
 ; a single "-" is recommended when agent unknown
 warn-text = quoted-string
 warn-date = DQUOTE HTTP-date DQUOTE

Multiple warnings can be generated in a response (either by the origin server or by a cache), including multiple
warnings with the same warn-code number that only differ in warn-text.

Fielding, et al. Standards Track [Page 21]

RFC 7234 HTTP/1.1 Caching June 2014

A user agent that receives one or more Warning header fields SHOULD inform the user of as many of them as
possible, in the order that they appear in the response. Senders that generate multiple Warning header fields are
encouraged to order them with this user agent behavior in mind. A sender that generates new Warning header
fields MUST append them after any existing Warning header fields.

Warnings are assigned three digit warn-codes. The first digit indicates whether the Warning is required to be
deleted from a stored response after validation:

• 1xx warn-codes describe the freshness or validation status of the response, and so they MUST be deleted by
a cache after validation. They can only be generated by a cache when validating a cached entry, and MUST
NOT be generated in any other situation.

• 2xx warn-codes describe some aspect of the representation that is not rectified by a validation (for example,
a lossy compression of the representation) and they MUST NOT be deleted by a cache after validation,
unless a full response is sent, in which case they MUST be.

If a sender generates one or more 1xx warn-codes in a message to be sent to a recipient known to implement
only HTTP/1.0, the sender MUST include in each corresponding warning-value a warn-date that matches the
Date header field in the message. For example:

HTTP/1.1 200 OK
Date: Sat, 25 Aug 2012 23:34:45 GMT
Warning: 112 - "network down" "Sat, 25 Aug 2012 23:34:45 GMT"

Warnings have accompanying warn-text that describes the error, e.g., for logging. It is advisory only, and its
content does not affect interpretation of the warn-code.

If a recipient that uses, evaluates, or displays Warning header fields receives a warn-date that is different from
the Date value in the same message, the recipient MUST exclude the warning-value containing that warn-date
before storing, forwarding, or using the message. This allows recipients to exclude warning-values that were
improperly retained after a cache validation. If all of the warning-values are excluded, the recipient MUST
exclude the Warning header field as well.

The following warn-codes are defined by this specification, each with a recommended warn-text in English,
and a description of its meaning. The procedure for defining additional warn codes is described in Section
7.2.1.

5.5.1. Warning: 110 - "Response is Stale"

A cache SHOULD generate this whenever the sent response is stale.

5.5.2. Warning: 111 - "Revalidation Failed"

A cache SHOULD generate this when sending a stale response because an attempt to validate the response
failed, due to an inability to reach the server.

5.5.3. Warning: 112 - "Disconnected Operation"

A cache SHOULD generate this if it is intentionally disconnected from the rest of the network for a period of
time.

5.5.4. Warning: 113 - "Heuristic Expiration"

A cache SHOULD generate this if it heuristically chose a freshness lifetime greater than 24 hours and the
response's age is greater than 24 hours.

5.5.5. Warning: 199 - "Miscellaneous Warning"

Fielding, et al. Standards Track [Page 22]

RFC 7234 HTTP/1.1 Caching June 2014

The warning text can include arbitrary information to be presented to a human user or logged. A system
receiving this warning MUST NOT take any automated action, besides presenting the warning to the user.

5.5.6. Warning: 214 - "Transformation Applied"

This Warning code MUST be added by a proxy if it applies any transformation to the representation, such
as changing the content-coding, media-type, or modifying the representation data, unless this Warning code
already appears in the response.

5.5.7. Warning: 299 - "Miscellaneous Persistent Warning"

The warning text can include arbitrary information to be presented to a human user or logged. A system
receiving this warning MUST NOT take any automated action.

Fielding, et al. Standards Track [Page 23]

RFC 7234 HTTP/1.1 Caching June 2014

6. History Lists

User agents often have history mechanisms, such as "Back" buttons and history lists, that can be used to
redisplay a representation retrieved earlier in a session.

The freshness model (Section 4.2) does not necessarily apply to history mechanisms. That is, a history
mechanism can display a previous representation even if it has expired.

This does not prohibit the history mechanism from telling the user that a view might be stale or from honoring
cache directives (e.g., Cache-Control: no-store).

Fielding, et al. Standards Track [Page 24]

RFC 7234 HTTP/1.1 Caching June 2014

7. IANA Considerations

7.1. Cache Directive Registry

The "Hypertext Transfer Protocol (HTTP) Cache Directive Registry" defines the namespace for the cache
directives. It has been created and is now maintained at <http://www.iana.org/assignments/http-cache-directive
s>.

7.1.1. Procedure

A registration MUST include the following fields:

• Cache Directive Name

• Pointer to specification text

Values to be added to this namespace require IETF Review (see [RFC5226], Section 4.1).

7.1.2. Considerations for New Cache Control Directives

New extension directives ought to consider defining:

• What it means for a directive to be specified multiple times,

• When the directive does not take an argument, what it means when an argument is present,

• When the directive requires an argument, what it means when it is missing,

• Whether the directive is specific to requests, responses, or able to be used in either.

See also Section 5.2.3.

7.1.3. Registrations

The registry has been populated with the registrations below:

Cache Directive Reference
max-age Section 5.2.1.1, Section 5.2.2.8
max-stale Section 5.2.1.2
min-fresh Section 5.2.1.3
must-revalidate Section 5.2.2.1
no-cache Section 5.2.1.4, Section 5.2.2.2
no-store Section 5.2.1.5, Section 5.2.2.3
no-transform Section 5.2.1.6, Section 5.2.2.4
only-if-cached Section 5.2.1.7
private Section 5.2.2.6
proxy-revalidate Section 5.2.2.7
public Section 5.2.2.5
s-maxage Section 5.2.2.9
stale-if-error [RFC5861], Section 4
stale-while-revalidate [RFC5861], Section 3

7.2. Warn Code Registry

The "Hypertext Transfer Protocol (HTTP) Warn Codes" registry defines the namespace for warn codes. It has
been created and is now maintained at <http://www.iana.org/assignments/http-warn-codes>.

7.2.1. Procedure

A registration MUST include the following fields:

• Warn Code (3 digits)

• Short Description

Fielding, et al. Standards Track [Page 25]

http://www.iana.org/assignments/http-cache-directives
http://www.iana.org/assignments/http-cache-directives
https://www.rfc-editor.org/rfc/rfc5226.html#section-4.1
https://www.rfc-editor.org/rfc/rfc5861.html#section-4
https://www.rfc-editor.org/rfc/rfc5861.html#section-3
http://www.iana.org/assignments/http-warn-codes

RFC 7234 HTTP/1.1 Caching June 2014

• Pointer to specification text

Values to be added to this namespace require IETF Review (see [RFC5226], Section 4.1).

7.2.2. Registrations

The registry has been populated with the registrations below:

Warn Code Short Description Reference
110 Response is Stale Section 5.5.1
111 Revalidation Failed Section 5.5.2
112 Disconnected Operation Section 5.5.3
113 Heuristic Expiration Section 5.5.4
199 Miscellaneous Warning Section 5.5.5
214 Transformation Applied Section 5.5.6
299 Miscellaneous Persistent Warning Section 5.5.7

7.3. Header Field Registration

HTTP header fields are registered within the "Message Headers" registry maintained at <http://www.iana.org/a
ssignments/message-headers/>.

This document defines the following HTTP header fields, so the "Permanent Message Header Field Names"
registry has been updated accordingly (see [BCP90]).

Header Field Name Protocol Status Reference
Age http standard Section 5.1
Cache-Control http standard Section 5.2
Expires http standard Section 5.3
Pragma http standard Section 5.4
Warning http standard Section 5.5

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force".

Fielding, et al. Standards Track [Page 26]

https://www.rfc-editor.org/rfc/rfc5226.html#section-4.1
http://www.iana.org/assignments/message-headers/
http://www.iana.org/assignments/message-headers/

RFC 7234 HTTP/1.1 Caching June 2014

8. Security Considerations

This section is meant to inform developers, information providers, and users of known security concerns
specific to HTTP caching. More general security considerations are addressed in HTTP messaging [RFC7230]
and semantics [RFC7231].

Caches expose additional potential vulnerabilities, since the contents of the cache represent an attractive target
for malicious exploitation. Because cache contents persist after an HTTP request is complete, an attack on
the cache can reveal information long after a user believes that the information has been removed from the
network. Therefore, cache contents need to be protected as sensitive information.

In particular, various attacks might be amplified by being stored in a shared cache; such "cache poisoning"
attacks use the cache to distribute a malicious payload to many clients, and are especially effective when an
attacker can use implementation flaws, elevated privileges, or other techniques to insert such a response into a
cache. One common attack vector for cache poisoning is to exploit differences in message parsing on proxies
and in user agents; see Section 3.3.3 of [RFC7230] for the relevant requirements.

Likewise, implementation flaws (as well as misunderstanding of cache operation) might lead to caching of
sensitive information (e.g., authentication credentials) that is thought to be private, exposing it to unauthorized
parties.

Furthermore, the very use of a cache can bring about privacy concerns. For example, if two users share a cache,
and the first one browses to a site, the second may be able to detect that the other has been to that site, because
the resources from it load more quickly, thanks to the cache.

Note that the Set-Cookie response header field [RFC6265] does not inhibit caching; a cacheable response with
a Set-Cookie header field can be (and often is) used to satisfy subsequent requests to caches. Servers who wish
to control caching of these responses are encouraged to emit appropriate Cache-Control response header fields.

Fielding, et al. Standards Track [Page 27]

rfc7230.html#message.body.length

RFC 7234 HTTP/1.1 Caching June 2014

9. Acknowledgments

See Section 10 of [RFC7230].

Fielding, et al. Standards Track [Page 28]

rfc7230.html#acks

RFC 7234 HTTP/1.1 Caching June 2014

10. References

10.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March
1997.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC
5234, January 2008.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing", RFC 7230, June 2014.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content", RFC 7231, June 2014.

[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Conditional
Requests", RFC 7232, June 2014.

[RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Range Requests", RFC 7233, June 2014.

[RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC
7235, June 2014.

10.2. Informative References

[BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration Procedures for Message Header Fields", BCP
90, RFC 3864, September 2004.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs",
BCP 26, RFC 5226, May 2008.

[RFC5861] Nottingham, M., "HTTP Cache-Control Extensions for Stale Content", RFC 5861, April 2010.

[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol
and Algorithms Specification", RFC 5905, June 2010.

[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265, April 2011.

Fielding, et al. Standards Track [Page 29]

https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/info/std68
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7232.html
https://www.rfc-editor.org/rfc/rfc7232.html
https://www.rfc-editor.org/rfc/rfc7233.html
https://www.rfc-editor.org/rfc/rfc7233.html
https://www.rfc-editor.org/rfc/rfc7235.html
https://www.rfc-editor.org/rfc/rfc3864.html
https://www.rfc-editor.org/info/bcp90
https://www.rfc-editor.org/info/bcp90
https://www.rfc-editor.org/rfc/rfc2616.html
https://www.rfc-editor.org/rfc/rfc2616.html
https://www.rfc-editor.org/rfc/rfc5226.html
https://www.rfc-editor.org/info/bcp26
https://www.rfc-editor.org/rfc/rfc5861.html
https://www.rfc-editor.org/rfc/rfc5905.html
https://www.rfc-editor.org/rfc/rfc5905.html
https://www.rfc-editor.org/rfc/rfc6265.html

RFC 7234 HTTP/1.1 Caching June 2014

Appendix A. Changes from RFC 2616

The specification has been substantially rewritten for clarity.

The conditions under which an authenticated response can be cached have been clarified. (Section 3.2)

New status codes can now define that caches are allowed to use heuristic freshness with them. Caches are now
allowed to calculate heuristic freshness for URIs with query components. (Section 4.2.2)

The algorithm for calculating age is now less conservative. Caches are now required to handle dates with time
zones as if they're invalid, because it's not possible to accurately guess. (Section 4.2.3)

The Content-Location response header field is no longer used to determine the appropriate response to use
when validating. (Section 4.3)

The algorithm for selecting a cached negotiated response to use has been clarified in several ways. In particular,
it now explicitly allows header-specific canonicalization when processing selecting header fields. (Section 4.1)

Requirements regarding denial-of-service attack avoidance when performing invalidation have been clarified.
(Section 4.4)

Cache invalidation only occurs when a successful response is received. (Section 4.4)

Cache directives are explicitly defined to be case-insensitive. Handling of multiple instances of cache directives
when only one is expected is now defined. (Section 5.2)

The "no-store" request directive doesn't apply to responses; i.e., a cache can satisfy a request with no-store on it
and does not invalidate it. (Section 5.2.1.5)

The qualified forms of the private and no-cache cache directives are noted to not be widely implemented; for
example, "private=foo" is interpreted by many caches as simply "private". Additionally, the meaning of the
qualified form of no-cache has been clarified. (Section 5.2.2)

The "no-cache" response directive's meaning has been clarified. (Section 5.2.2.2)

The one-year limit on Expires header field values has been removed; instead, the reasoning for using a sensible
value is given. (Section 5.3)

The Pragma header field is now only defined for backwards compatibility; future pragmas are deprecated.
(Section 5.4)

Some requirements regarding production and processing of the Warning header fields have been relaxed, as
it is not widely implemented. Furthermore, the Warning header field no longer uses RFC 2047 encoding, nor
does it allow multiple languages, as these aspects were not implemented. (Section 5.5)

This specification introduces the Cache Directive and Warn Code Registries, and defines considerations for
new cache directives. (Section 7.1 and Section 7.2)

Fielding, et al. Standards Track [Page 30]

RFC 7234 HTTP/1.1 Caching June 2014

Appendix B. Imported ABNF

The following core rules are included by reference, as defined in Appendix B.1 of [RFC5234]: ALPHA
(letters), CR (carriage return), CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit sequence of data), SP (space), and
VCHAR (any visible US-ASCII character).

The rules below are defined in [RFC7230]:

 OWS = <OWS, see [RFC7230], Section 3.2.3>
 field-name = <field-name, see [RFC7230], Section 3.2>
 quoted-string = <quoted-string, see [RFC7230], Section 3.2.6>
 token = <token, see [RFC7230], Section 3.2.6>

 port = <port, see [RFC7230], Section 2.7>
 pseudonym = <pseudonym, see [RFC7230], Section 5.7.1>
 uri-host = <uri-host, see [RFC7230], Section 2.7>

The rules below are defined in other parts:

 HTTP-date = <HTTP-date, see [RFC7231], Section 7.1.1.1>

Fielding, et al. Standards Track [Page 31]

https://www.rfc-editor.org/rfc/rfc5234.html#appendix-B.1
rfc7230.html#whitespace
rfc7230.html#header.fields
rfc7230.html#field.components
rfc7230.html#field.components
rfc7230.html#uri
rfc7230.html#header.via
rfc7230.html#uri
rfc7231.html#http.date

RFC 7234 HTTP/1.1 Caching June 2014

Appendix C. Collected ABNF

In the collected ABNF below, list rules are expanded as per Section 1.2 of [RFC7230].

Age = delta-seconds

Cache-Control = *("," OWS) cache-directive *(OWS "," [OWS
 cache-directive])

Expires = HTTP-date

HTTP-date = <HTTP-date, see [RFC7231], Section 7.1.1.1>

OWS = <OWS, see [RFC7230], Section 3.2.3>

Pragma = *("," OWS) pragma-directive *(OWS "," [OWS
 pragma-directive])

Warning = *("," OWS) warning-value *(OWS "," [OWS warning-value]
)

cache-directive = token ["=" (token / quoted-string)]

delta-seconds = 1*DIGIT

extension-pragma = token ["=" (token / quoted-string)]

field-name = <field-name, see [RFC7230], Section 3.2>

port = <port, see [RFC7230], Section 2.7>
pragma-directive = "no-cache" / extension-pragma
pseudonym = <pseudonym, see [RFC7230], Section 5.7.1>

quoted-string = <quoted-string, see [RFC7230], Section 3.2.6>

token = <token, see [RFC7230], Section 3.2.6>

uri-host = <uri-host, see [RFC7230], Section 2.7>

warn-agent = (uri-host [":" port]) / pseudonym
warn-code = 3DIGIT
warn-date = DQUOTE HTTP-date DQUOTE
warn-text = quoted-string
warning-value = warn-code SP warn-agent SP warn-text [SP warn-date
]

Fielding, et al. Standards Track [Page 32]

rfc7230.html#notation

RFC 7234 HTTP/1.1 Caching June 2014

Index

1
110 (warn-code) 13, 22, 26
111 (warn-code) 22, 26
112 (warn-code) 13, 22, 26
113 (warn-code) 11, 22, 26
199 (warn-code) 22, 26

2
214 (warn-code) 23, 26
299 (warn-code) 23, 26

A
age 10
Age header field 9, 12, 16, 26

B
BCP90 26, 29

C
cache 5
cache entry 6
cache key 6, 6
Cache-Control header field 7, 16, 26, 30

D
Disconnected Operation (warn-text) 13, 22, 26

E
Expires header field 7, 10, 11, 20, 26, 30
explicit expiration time 10

F
fresh 10
freshness lifetime 10

G
Grammar
Age 16
Cache-Control 16
cache-directive 16
delta-seconds 5
Expires 20
extension-pragma 21
Pragma 21
pragma-directive 21
warn-agent 21
warn-code 21
warn-date 21
warn-text 21
Warning 21
warning-value 21

H
Heuristic Expiration (warn-text) 11, 22, 26
heuristic expiration time 10

M
max-age (cache directive) 16, 19
max-stale (cache directive) 16

min-fresh (cache directive) 17
Miscellaneous Persistent Warning (warn-text) 23, 26
Miscellaneous Warning (warn-text) 22, 26
must-revalidate (cache directive) 18

N
no-cache (cache directive) 17, 18
no-store (cache directive) 17, 18
no-transform (cache directive) 17, 18

O
only-if-cached (cache directive) 17

P
Pragma header field 9, 20, 26, 30
private (cache directive) 19
private cache 5
proxy-revalidate (cache directive) 19
public (cache directive) 18

R
Response is Stale (warn-text) 13, 22, 26
Revalidation Failed (warn-text) 22, 26
RFC2119 5, 29
RFC2616 11, 29

Section 13.9 11
RFC5226 25, 26, 29

Section 4.1 25, 26
RFC5234 5, 29, 31

Appendix B.1 31
RFC5861 25, 25, 29

Section 3 25
Section 4 25

RFC5905 12, 29
RFC6265 27, 29
RFC7230 5, 5, 7, 9, 9, 15, 15, 15, 17, 18, 27, 27, 28, 29, 31,
31, 31, 31, 31, 31, 31, 31, 32

Section 1.2 32
Section 2.5 5
Section 2.7 31, 31
Section 3.2 9, 31
Section 3.2.3 31
Section 3.2.6 31, 31
Section 3.3.3 27
Section 5.5 9, 15, 15, 15
Section 5.7.1 31
Section 5.7.2 17, 18
Section 7 5
Section 10 28

RFC7231 6, 6, 9, 9, 11, 12, 15, 20, 27, 29, 31
Section 4.2.1 9, 15
Section 4.3.1 6
Section 6.1 11
Section 7.1.1.1 20, 31
Section 7.1.1.2 12
Section 7.1.4 9

RFC7232 11, 13, 13, 13, 13, 13, 14, 14, 29
Section 2.1 14
Section 2.2 11, 13
Section 2.3 13

Fielding, et al. Standards Track [Page 33]

RFC 7234 HTTP/1.1 Caching June 2014

Section 3.2 13
Section 3.3 14
Section 6 13

RFC7233 7, 8, 8, 14, 14, 29
Section 3.2 14
Section 4.3 8

RFC7235 7, 7, 29
Section 4.2 7, 7

S
s-maxage (cache directive) 19
shared cache 5
stale 10
strong validator 14

T
Transformation Applied (warn-text) 23, 26

V
validator 13

W
Warning header field 8, 14, 15, 21, 26, 30

Fielding, et al. Standards Track [Page 34]

Authors' Addresses

Roy T. Fielding (editor)
Adobe Systems Incorporated
345 Park Ave
San Jose, CA 95110
USA
Email: fielding@gbiv.com
URI: http://roy.gbiv.com/

Mark Nottingham (editor)
Akamai
Email: mnot@mnot.net
URI: http://www.mnot.net/

Julian F. Reschke (editor)
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany
Email: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/

http://roy.gbiv.com/
http://www.mnot.net/
http://greenbytes.de/tech/webdav/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Conformance and Error Handling
	1.2 Syntax Notation
	1.2.1 Delta Seconds

	2 Overview of Cache Operation
	3 Storing Responses in Caches
	3.1 Storing Incomplete Responses
	3.2 Storing Responses to Authenticated Requests
	3.3 Combining Partial Content

	4 Constructing Responses from Caches
	4.1 Calculating Secondary Keys with Vary
	4.2 Freshness
	4.2.1 Calculating Freshness Lifetime
	4.2.2 Calculating Heuristic Freshness
	4.2.3 Calculating Age
	4.2.4 Serving Stale Responses

	4.3 Validation
	4.3.1 Sending a Validation Request
	4.3.2 Handling a Received Validation Request
	4.3.3 Handling a Validation Response
	4.3.4 Freshening Stored Responses upon Validation
	4.3.5 Freshening Responses via HEAD

	4.4 Invalidation

	5 Header Field Definitions
	5.1 Age
	5.2 Cache-Control
	5.2.1 Request Cache-Control Directives
	5.2.1.1 max-age
	5.2.1.2 max-stale
	5.2.1.3 min-fresh
	5.2.1.4 no-cache
	5.2.1.5 no-store
	5.2.1.6 no-transform
	5.2.1.7 only-if-cached

	5.2.2 Response Cache-Control Directives
	5.2.2.1 must-revalidate
	5.2.2.2 no-cache
	5.2.2.3 no-store
	5.2.2.4 no-transform
	5.2.2.5 public
	5.2.2.6 private
	5.2.2.7 proxy-revalidate
	5.2.2.8 max-age
	5.2.2.9 s-maxage

	5.2.3 Cache Control Extensions

	5.3 Expires
	5.4 Pragma
	5.5 Warning
	5.5.1 Warning: 110 - "Response is Stale"
	5.5.2 Warning: 111 - "Revalidation Failed"
	5.5.3 Warning: 112 - "Disconnected Operation"
	5.5.4 Warning: 113 - "Heuristic Expiration"
	5.5.5 Warning: 199 - "Miscellaneous Warning"
	5.5.6 Warning: 214 - "Transformation Applied"
	5.5.7 Warning: 299 - "Miscellaneous Persistent Warning"

	6 History Lists
	7 IANA Considerations
	7.1 Cache Directive Registry
	7.1.1 Procedure
	7.1.2 Considerations for New Cache Control Directives
	7.1.3 Registrations

	7.2 Warn Code Registry
	7.2.1 Procedure
	7.2.2 Registrations

	7.3 Header Field Registration

	8 Security Considerations
	9 Acknowledgments
	10 References
	10.1 Normative References
	10.2 Informative References

	Appendix A Changes from RFC 2616
	Appendix B Imported ABNF
	Appendix C Collected ABNF
	Index
	Authors' Addresses

