Internet Engineering Task Force (IETF) T. Bray, Editor

Request for Comments: 8259 Textuality
Obsoletes: 7159 December 2017

Category: Standards Track
ISSN: 2070-1721

The JavaScript Object Notation
(JSON) Data I nterchange For mat

Abstract

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format.
It was derived from the ECM A Script Programming Language Standard. JSON defines a small set of formatting
rules for the portable representation of structured data.

This document removes inconsi stencies with other specifications of JSON, repairs specification errors, and
offers experience-based interoperability guidance.

Status of thisMemo

Thisis an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of

the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standardsis available in Section 2 of RFC
7841".

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at https://www.rfc-editor.org/info/rfc8259%

Copyright Notice

Copyright () 2017 IETF Trust and the personsidentified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review
these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

This document may contain material from IETF Documents or |ETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the copyright in some of this material may

not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards
Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials,

1 https://www.rfc-editor.org/rfc/rfc7841.html#section-2
2 https://www.rfc-editor.org/info/rfc8259
3 https://trustee.ietf.org/license-info

#rfc.authors.1
#rfc.authors.1
#RFC7159
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/info/rfc8259
https://trustee.ietf.org/license-info

RFC 8259 JSON December 2017

this document may not be modified outside the IETF Standards Process, and derivative works of it may not be
created outside the IETF Standards Process, except to format it for publication as an RFC or to trandate it into
languages other than English.

Bray Standards Track [Page 2]

RFC 8259 JSON December 2017

Table of Contents

O I 0o [Tox oo T 4
1.1 Conventions USEd iN THiS DOCUMENT..........ceiiiiie it e ieee e sttt e et ee s st e s sebeesssseeesssesessbesssssseesasssessabeessssesssarenesssreess 4
1.2 SPECITiCAIONS OF JSON......couiiiitirietirietiriettrteie ettt b bbbt re st b s s b ea e b e b e s eb e e e b et b et b e b es e sbese s enennenes 4
1.3 INtroduCtioN tO ThiS REVISION.......ooiiiiiiieie ettt et s e e st e s s sbe e s sbe e s ssbbessaseesssabaessbeessasensssaseessnbenesanns 4
AN 1@ 1\ I = 12 0] 0 = SO USSP 6
T = 11O 7
@ o] 1= o £ 8
LI N = 74 T PSS PRRR 9
(ST N LU 0] 1= =TT 10
S 10 SRR RTRTPRN 11
SRS WL aTo = g Lo IO T T Tox £ g s U= T 12
S O = = oi (= gl = g o(o T [g To OSSOSO 12
I U 1 oo o [O g == (<! (R 12
8.3 SHING COMPAITSON. ...ttt sttt ettt sttt b e e ebe s e bt e bt e st b e st E et e b et e b e e e b e se e b e aeeb e se e b e s eb e ne e st eb e st e b et nb et et ee 12
L TS TSP 13
O 1= a1 = (o R 14
i N N o g = T 1= = 1 0] F TR 15
12 SECUNItY CONSIOEN ALIONS.....ccuiieeieeiieiteeiteseete st ete et e e ere e teeeesseeeesaeeeesaeestesseentesseensensaesseassanseensenseensesseensesanensens 17
G T = 10T 0] =S 18
T4 REFEIENCES.....eeii ettt ettt ettt e e ettt e e e et e e sbeeseabesssaaeeessaseeseabesssseeessaeeeseabesssssessbeeesenbeesssnessbenesasteesanes 20
3 R \\ o) 010 = Yl RS L= (= 0= 20
14.2 INfOrMELIVE REFEIENCES. ... eeeceei ettt sttt e et e e b e s st e et e s s et e e bessbes s bessbesesbessaeesabessabesabessbesssbessrenants 20
Appendix A Changes from RFC 7150.........cciiieeeiie e sesies e seeseeeeese e s sse e ssestessessesteseeseassensensensesessensessens 21
APPENAIX B CONTIIDULOIS.....eiiieiieiieterte ettt bbbt e bt e bt e st e et b et sb e e b e eb s en b enennenis 22
PN T [RESN X0 [0 [=TSR 23

Bray Standards Track [Page 3]

RFC 8259 JSON December 2017

1. Introduction

JavaScript Object Notation (JSON) is atext format for the serialization of structured data. It is derived from the
object literals of JavaScript, as defined in the ECMA Script Programming Language Standard, Third Edition
[ECMA-262].

JSON can represent four primitive types (strings, numbers, booleans, and null) and two structured types
(objects and arrays).

A string is a sequence of zero or more Unicode characters [UNICODE]. Note that this citation references the
latest version of Unicode rather than a specific release. It is not expected that future changes in the Unicode
specification will impact the syntax of JSON.

An object is an unordered collection of zero or more name/value pairs, where anameisastring and avaueisa
string, number, boolean, null, object, or array.

An array is an ordered sequence of zero or more values.
The terms "object” and "array" come from the conventions of JavaScript.

JSON's design goals were for it to be minimal, portable, textual, and a subset of JavaScript.

1.1. Conventions Used in This Document

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD

NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to

be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in al capitals,
as shown here.

The grammatical rulesin this document are to be interpreted as described in [RFC5234].

1.2. Specifications of JSON

This document replaces [RFC7159]. [RFC7159] obsoleted [RFC4627], which originally described JSON and
registered the mediatype "application/json".

JSON is aso described in [ECMA-404].

The reference to ECMA-404 in the previous sentence is normative, not with the usual meaning that
implementors need to consult it in order to understand this document, but to emphasize that there are no
inconsistencies in the definition of theterm "JSON text" in any of its specifications. Note, however, that

ECMA-404 alows several practices that this specification recommends avoiding in the interests of maximal
interoperability.

Theintent is that the grammar is the same between the two documents, although different descriptions are used.
If there is a difference found between them, ECMA and the IETF will work together to update both documents.

If an error isfound with either document, the other should be examined to seeif it has asimilar error; if it does,
it should be fixed, if possible.

If either document is changed in the future, ECMA and the IETF will work together to ensure that the two
documents stay aligned through the change.

1.3. Introduction to This Revision

In the years since the publication of RFC 4627, JSON has found very wide use. This experience has reveal ed
certain patterns that, while allowed by its specifications, have caused interoperability problems.

Also, asmall number of errata have been reported regarding RFC 4627 (see RFC Errata | Ds 607 [Err607]
and 3607 [Err3607]) and regarding RFC 7159 (see RFC Errata |Ds 3915 [Err3915], 4264 [Err4264], 4336
[Err4336], and 4388 [Err4388]).

Bray Standards Track [Page 4]

RFC 8259 JSON December 2017

This document's goal is to apply the errata, remove inconsistencies with other specifications of JSON, and
highlight practices that can lead to interoperability problems.

Bray Standards Track [Page 5]

RFC 8259

2. JSON Grammar

JSON December 2017

A JSON text is a sequence of tokens. The set of tokensincludes six structural characters, strings, numbers, and

three literal names.

A JSON text is aserialized value. Note that certain previous specifications of JSON constrained a JSON text to
be an object or an array. Implementations that generate only objects or arrays where a JSON text is called for
will beinteroperable in the sense that all implementations will accept these as conforming JSON texts.

JSON-text = ws val ue ws

These are the six structural characters:

begi n-array
begi n- obj ect
end- array

end- obj ect
name- separ at or

val ue- separ at or

Ws

5 & 5 b

Ws

5B ws
7B ws
%5D ws
W7D ws
W3A ws

%w2C ws

| eft square bracket
left curly bracket
right square bracket
right curly bracket
col on

comma

Insignificant whitespace is allowed before or after any of the six structural characters.

ws = *(
%20 /
%09 /
%% 0A /
% 0D)

Bray

; Space

; Horizontal tab

; Line feed or New |line
; Carriage return

Standards Track [Page 6]

RFC 8259 JSON December 2017

3. Values

A JSON value MUST be an object, array, number, or string, or one of the following three literal names:
false
null
true

The litera names MUST be lowercase. No other literal names are allowed.

value = false / null / true / object / array / nunber / string

fal se = ¥%66. 61. 6¢. 73. 65 ; fal se
null = %6e. 75. 6¢. 6C ;o null
true = %74.72.75.65 i true

Bray Standards Track [Page 7]

RFC 8259 JSON December 2017

4,

Bray

Objects

An object structureis represented as apair of curly brackets surrounding zero or more name/value pairs (or
members). A nameisastring. A single colon comes after each name, separating the name from the value. A
single comma separates a value from a following name. The names within an object SHOULD be unique.

obj ect = begi n-object [nmenber *(val ue-separator nenber)]
end- obj ect

menber = string nane-separator val ue

An object whose hames are all unique is interoperable in the sense that all software implementations receiving
that object will agree on the name-value mappings. When the names within an object are not unique, the
behavior of software that receives such an object is unpredictable. Many implementations report the last name/
value pair only. Other implementations report an error or fail to parse the object, and some implementations
report all of the name/value pairs, including duplicates.

JSON parsing libraries have been observed to differ as to whether or not they make the ordering of object
members visible to calling software. |mplementations whose behavior does not depend on member ordering
will beinteroperable in the sense that they will not be affected by these differences.

Standards Track [Page §]

RFC 8259 JSON December 2017

5. Arrays

An array structureis represented as square brackets surrounding zero or more values (or el ements). Elements
are separated by commas.

array = begin-array [value *(val ue-separator value)] end-array

There is no requirement that the values in an array be of the same type.

Bray Standards Track [Page 9]

RFC

8259 JSON December 2017

6. Numbers

Bray

The representation of numbersis similar to that used in most programming languages. A number is represented
in base 10 using decimal digits. It contains an integer component that may be prefixed with an optional minus
sign, which may be followed by a fraction part and/or an exponent part. Leading zeros are not allowed.

A fraction part is adecimal point followed by one or more digits.

An exponent part begins with the letter E in uppercase or lowercase, which may be followed by a plus or minus
sign. The E and optional sign are followed by one or more digits.

Numeric values that cannot be represented in the grammar below (such as Infinity and NaN) are not permitted.

number = [minus] int [frac] [exp]

deci mal - poi nt = %&2E ;

digitl-9 = %31-39 ; 1-9

e = 65 / w45 ; e E

exp = e[mnus / plus] 1*DAT

frac = decimal -point 1*DIGAT

int =zero/ (digitl-9 *DIAT)

m nus = %2D Do

plus = %2B Do+

zero = %30 ;0
This specification allows implementations to set limits on the range and precision of numbers accepted. Since
software that implements |EEE 754 binary64 (double precision) numbers [l EEE754] is generally available and
widely used, good interoperability can be achieved by implementations that expect no more precision or range
than these provide, in the sense that implementations will approximate JSON numbers within the expected
precision. A JSON number such as 1E400 or 3.141592653589793238462643383279 may indicate potential

interoperability problems, since it suggests that the software that created it expects receiving software to have
greater capabilities for numeric magnitude and precision than iswidely available.

Note that when such software is used, numbers that are integers and are in the range [-(2**53)+1, (2**53)-1]
are interoperable in the sense that implementations will agree exactly on their numeric values.

Standards Track [Page 10]

RFC 8259 JSON December 2017

7. Strings

Bray

The representation of stringsis similar to conventions used in the C family of programming languages. A

string begins and ends with quotation marks. All Unicode characters may be placed within the quotation marks,
except for the characters that MUST be escaped: quotation mark, reverse solidus, and the control characters (U
+0000 through U+001F).

Any character may be escaped. If the character isin the Basic Multilingual Plane (U+0000 through U+FFFF),
then it may be represented as a six-character sequence: areverse solidus, followed by the lowercase letter u,
followed by four hexadecimal digits that encode the character's code point. The hexadecimal letters A through
F can be uppercase or lowercase. So, for example, a string containing only a single reverse solidus character
may be represented as "\u005C".

Alternatively, there are two-character sequence escape representations of some popular characters. So, for
example, a string containing only a single reverse solidus character may be represented more compactly as "\\".

To escape an extended character that is not in the Basic Multilingual Plane, the character is represented as a 12-
character sequence, encoding the UTF-16 surrogate pair. So, for example, a string containing only the G clef
character (U+1D11E) may be represented as "\uD834\uDD1E".

string = quotation-mark *char quotation-nmark

char = unescaped /

escape (
w22 |/ ;" quot ation mark W+0022
w5C / ;o\ reverse solidus U+005C
W 2F / i sol i dus W+002F
w62 / ;b backspace U+0008
%66 / g f formfeed U+000C
% 6E / ;on line feed U+000A
W72 |/ por carriage return W+000D
W74 | ;ot tab U+0009
%75 AHEXDI G) ; uXXXX U+ XXXX
escape = %5C ;o\

quotation-mark = %22 oo

unescaped = %%20-21 / %23-5B / 9%5D- 10FFFF

Standards Track [Page 11]

RFC 8259 JSON December 2017

8. String and Character |ssues

8.1. Character Encoding

JSON text exchanged between systems that are not part of a closed ecosystem MUST be encoded using UTF-8
[RFC3629].

Previous specifications of JSON have not required the use of UTF-8 when transmitting JSON text. However,
the vast magjority of JSON-based software implementations have chosen to use the UTF-8 encoding, to the
extent that it is the only encoding that achieves interoperability.

Implementations MUST NOT add a byte order mark (U+FEFF) to the beginning of a networked-transmitted
JSON text. In the interests of interoperability, implementations that parse JSON texts MAY ignore the presence
of abyte order mark rather than treating it as an error.

8.2. Unicode Characters

When all the strings represented in a JSON text are composed entirely of Unicode characters [UNICODE]
(however escaped), then that JSON text is interoperable in the sense that all software implementations that
parseit will agree on the contents of names and of string values in objects and arrays.

However, the ABNF in this specification allows member names and string values to contain bit sequences that
cannot encode Unicode characters; for example, "\UDEAD" (a single unpaired UTF-16 surrogate). Instances
of this have been observed, for example, when alibrary truncates a UTF-16 string without checking whether
the truncation split a surrogate pair. The behavior of software that receives JSON texts containing such values
is unpredictable; for example, implementations might return different values for the length of a string value or
even suffer fatal runtime exceptions.

8.3. String Comparison

Software implementations are typically required to test names of object members for equality. |mplementations
that transform the textual representation into sequences of Unicode code units and then perform the comparison
numerically, code unit by code unit, are interoperable in the sense that implementations will agreein all cases
on equality or inequality of two strings. For example, implementations that compare strings with escaped
characters unconverted may incorrectly find that "a\b" and "a\u005Chb" are not equal.

Bray Standards Track [Page 12]

RFC 8259 JSON December 2017

9. Parsers

A JSON parser transforms a JSSON text into another representation. A JSON parser MUST accept all texts that
conform to the JSON grammar. A JSON parser MAY accept non-JSON forms or extensions.

An implementation may set limits on the size of texts that it accepts. An implementation may set limitson

the maximum depth of nesting. An implementation may set limits on the range and precision of numbers. An
implementation may set limits on the length and character contents of strings.

Bray Standards Track [Page 13]

RFC 8259 JSON December 2017

10. Generators

A JSON generator produces JSON text. The resulting text MUST strictly conform to the JSON grammar.

Bray Standards Track [Page 14]

RFC 8259

11.

Bray

|ANA Considerations

JSON

The mediatype for JSON text is application/json.

Type name;
Subtype name:
Required parameters:

Optiona parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Standards Track

December 2017

[Page 15]

application
json

n/

a

n/
a

binary

See
RFC
8259,
Section
12

Described
in

RFC
8259

RFC
8259

JSON

has

been

used

to

exchange
data
between
applications
written

in

al

of

these
programming
languages:
ActionScript,
C,

CH,

Clojure,
ColdFusion,
Common
Lisp,

E,

Erlang,

Go,

Java,
JavaScript,
Lua,

RFC

Bray

8259 JSON

Additional information:

Person & email address to contact for further information:

Intended usage:
Restrictions on usage:
Author:

Change controller:

Note:

Standards Track

December 2017

[Page 16]

Objective
CAML,
Perl,

PHP,
Python,
Rebol,
Ruby,
Scala,

and
Scheme.
Magic
number(s):
n/

a

File
extension(s): .
Macintosh
file

type
code(s):
TEXT

IESG
<iesy@ietf.or

COMMON
none

Douglas
Crockford

<douglas@cr¢

IESG
<iesg@ietf.or

No
"charset"
parameter
is

defined
for

this
registration.
Adding
one

realy

has

no

effect

on
compliant
recipients.

RFC 8259 JSON December 2017

12. Security Considerations

Generally, there are security issues with scripting languages. JSON is a subset of JavaScript but excludes
assignment and invocation.

Since JSON's syntax is borrowed from JavaScript, it is possible to use that language's "eval ()" function to

parse most JSON texts (but not all; certain characters such as U+2028 LINE SEPARATOR and U+2029
PARAGRAPH SEPARATOR arelegal in JSON but not JavaScript). This generally constitutes an unacceptable
security risk, since the text could contain executable code along with data declarations. The same consideration
appliesto the use of eval()-like functions in any other programming language in which JSON texts conform to
that language's syntax.

Bray Standards Track [Page 17]

RFC 8259 JSON December 2017

13. Examples
ThisisaJSON object:

{
"I mage": {
"Wdth": 800,
"Hei ght": 600,
"Title": "View from 15th Fl oor",
"Thunbnai |l ": {
Ul "http://ww. exanpl e. conl i nage/ 481989943",
"Hei ght": 125,
"Wdth": 100
1
"Ani mated" : fal se,
"I Ds": [116, 943, 234, 38793]
}
}

Its Image member is an object whose Thumbnail member is an object and whose |Ds member is an array of

numbers.

ThisisaJSON array containing two objects:

[
{

" Addr ess":
"Gty":
"State":

" Zi p":
"Country":

" Addr ess":
"Gty":
"State":
" Zi p":
"Country":
}
]

"precision":
"Latitude":
"Longi t ude":

"precision":
"Latitude":
"Longi t ude":

"zip",
37. 7668,
-122. 3959,

"SAN FRANCI SCO',
"94107",

"zip",
37.371991,
-122. 026020,

" SUNNYVALE",
"94085",

Here are three small JSON texts containing only values:

Bray

Standards Track

[Page 18]

RFC 8259 JSON December 2017
"Hell o world!"
42
true

Bray Standards Track [Page 19]

RFC 8259

JSON December 2017

14. References

14.1. Normative References

[ECMA-404]

[IEEE754]
[RFC2119]

[RFC3629]

[RFC5234]

[RFC8174]

[UNICODE]

Ecma International, "The JSON Data Interchange Format", Standard ECMA-404, <http://www.ecm
a-international.org/publications/standards/Ecma-404.htm>.

IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE 754.

Bradner, S, "Key words for usein RFCs to Indicate Requirement Levels', BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <https://www:.rfc-editor.org/info/rfc2119>.

Yergeau, F., "UTF-8, atransformation format of 1SO 10646", STD 63, RFC 3629, DOI 10.17487/
RFC3629, November 2003, <https://www.rfc-editor.org/info/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications. ABNF", STD 68, RFC
5234, DOI 10.17487/RFC5234, January 2008, <https://www.rfc-editor.org/info/rfc5234>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words', BCP 14, RFC 8174,
DOI 10.17487/RFC8174, May 2017, <https.//www.rfc-editor.org/info/rfc8174>.

The Unicode Consortium, "The Unicode Standard", <http://www.unicode.org/versions/latest/>.

14.2. Informative References

[ECMA-262]

[Err3607]
[Err3915]
[Errd264]
[Err4336]
[Err4388]
[Err607]
[RFC4627]

[RFC7159]

Bray

Ecma International, "ECM A Script Language Specification”, Standard ECMA-262, Third Edition,
December 1999, <http://www.ecma-international .org/publications/files ECMA-ST-ARCH/ECMA-2
62,%203rd%20edition,%20December%201999.pdf>.

RFC Errata, "Erratum ID 3607", RFC 4627, <https.//www.rfc-editor.org/errata/eid3607>.
RFC Errata, "Erratum ID 3915", RFC 7159, <https.//www.rfc-editor.org/errata/eid3915>.
RFC Errata, "Erratum ID 4264", RFC 7159, <https.//www.rfc-editor.org/errata/eid4264>.
RFC Errata, "Erratum ID 4336", RFC 7159, <https://www.rfc-editor.org/errata/eid4336>.
RFC Errata, "Erratum ID 4388", RFC 7159, <https.//www.rfc-editor.org/errata/eid4388>.
RFC Errata, "Erratum ID 607", RFC 4627, <https.//www.rfc-editor.org/errata/eid607>.

Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)", RFC
4627, DOI 10.17487/RFC4627, July 2006, <https.//www.rfc-editor.org/info/rfc4627>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI
10.17487/RFC7159, March 2014, <https://www:.rfc-editor.org/info/rfc7159>.

Standards Track [Page 20]

http://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc3629.html
https://www.rfc-editor.org/info/std63
https://dx.doi.org/10.17487/RFC3629
https://dx.doi.org/10.17487/RFC3629
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/info/std68
https://dx.doi.org/10.17487/RFC5234
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC8174
http://www.unicode.org/versions/latest/
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://www.rfc-editor.org/errata/eid3607
https://www.rfc-editor.org/errata/eid3915
https://www.rfc-editor.org/errata/eid4264
https://www.rfc-editor.org/errata/eid4336
https://www.rfc-editor.org/errata/eid4388
https://www.rfc-editor.org/errata/eid607
https://www.rfc-editor.org/rfc/rfc4627.html
https://dx.doi.org/10.17487/RFC4627
https://www.rfc-editor.org/rfc/rfc7159.html
https://dx.doi.org/10.17487/RFC7159
https://dx.doi.org/10.17487/RFC7159

RFC 8259 JSON December 2017

Appendix A. Changesfrom RFC 7159

This section lists changes between this document and the text in RFC 7159.

e Section 1.2 has been updated to reflect the removal of a JSON specification from ECMA-262, to make
ECMA-404 anormative reference, and to explain the particular meaning of "normative".

» Section 1.3 has been updated to reflect erratafiled against RFC 7159, not RFC 4627.

e Section 8.1 was changed to require the use of UTF-8 when transmitted over a network.

» Section 12 has been updated to increase the precision of the description of the security risk that follows
from using the ECMA Script "eval()" function.

e Section 14.1 has been updated to include ECMA-404 as a normative reference.

e Section 14.2 has been updated to remove ECMA-404, update the version of ECMA-262, and refresh the
erratalist.

Bray Standards Track [Page 21]

RFC 8259 JSON December 2017

Appendix B. Contributors

RFC 4627 was written by Douglas Crockford. This document was constructed by making arelatively small
number of changes to that document; thus, the vast majority of the text hereis his.

Bray Standards Track [Page 22]

Author's Address

Tim Bray (editor)
Textuality
EMail: tbray @textuality.com

mailto:tbray@textuality.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Conventions Used in This Document
	1.2 Specifications of JSON
	1.3 Introduction to This Revision

	2 JSON Grammar
	3 Values
	4 Objects
	5 Arrays
	6 Numbers
	7 Strings
	8 String and Character Issues
	8.1 Character Encoding
	8.2 Unicode Characters
	8.3 String Comparison

	9 Parsers
	10 Generators
	11 IANA Considerations
	12 Security Considerations
	13 Examples
	14 References
	14.1 Normative References
	14.2 Informative References

	Appendix A Changes from RFC 7159
	Appendix B Contributors
	Author's Address

