
Internet Engineering Task Force (IETF) M. Nottingham
Request for Comments: 8941 Fastly
Category: Standards Track P-H. Kamp
ISSN: 2070-1721 The Varnish Cache Project

February 2021

Structured Field Values for HTTP
draft-ietf-httpbis-header-structure-19

Abstract

This document describes a set of data types and associated algorithms that are intended to make it easier and
safer to define and handle HTTP header and trailer fields, known as "Structured Fields", "Structured Headers",
or "Structured Trailers". It is intended for use by specifications of new HTTP fields that wish to use a common
syntax that is more restrictive than traditional HTTP field values.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of
the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC
 78411.

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at https://www.rfc-editor.org/info/rfc89412.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info3) in effect on the date of publication of this document. Please review
these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

1 https://www.rfc-editor.org/rfc/rfc7841.html#section-2
2 https://www.rfc-editor.org/info/rfc8941
3 https://trustee.ietf.org/license-info

#rfc.authors.1
#rfc.authors.1
#rfc.authors.2
#rfc.authors.2
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/info/rfc8941
https://trustee.ietf.org/license-info

RFC 8941 Structured Field Values for HTTP February 2021

Table of Contents

1 Introduction...4

1.1 Intentionally Strict Processing...4

1.2 Notational Conventions... 4

2 Defining New Structured Fields..6

3 Structured Data Types...8

3.1 Lists..8
 3.1.1 Inner Lists... 8
 3.1.2 Parameters...9

3.2 Dictionaries.. 9

3.3 Items...10
 3.3.1 Integers..11
 3.3.2 Decimals..11
 3.3.3 Strings... 11
 3.3.4 Tokens...12
 3.3.5 Byte Sequences...12
 3.3.6 Booleans..12

4 Working with Structured Fields in HTTP.. 14

4.1 Serializing Structured Fields... 14
 4.1.1 Serializing a List...14
 4.1.2 Serializing a Dictionary..15
 4.1.3 Serializing an Item..15
 4.1.4 Serializing an Integer..15
 4.1.5 Serializing a Decimal... 15
 4.1.6 Serializing a String... 16
 4.1.7 Serializing a Token...16
 4.1.8 Serializing a Byte Sequence...16
 4.1.9 Serializing a Boolean..16

4.2 Parsing Structured Fields...17
 4.2.1 Parsing a List..18
 4.2.2 Parsing a Dictionary... 18
 4.2.3 Parsing an Item...18
 4.2.4 Parsing an Integer or Decimal... 19
 4.2.5 Parsing a String.. 19
 4.2.6 Parsing a Token..20
 4.2.7 Parsing a Byte Sequence.. 20
 4.2.8 Parsing a Boolean...20

5 IANA Considerations... 21

6 Security Considerations... 22

7 References.. 23

7.1 Normative References... 23

7.2 Informative References..23

Appendix A Frequently Asked Questions...24

Nottingham & Kamp Expires August 2021 [Page 2]

RFC 8941 Structured Field Values for HTTP February 2021

A.1 Why Not JSON?...24

Appendix B Implementation Notes..25

Authors' Addresses...27

Nottingham & Kamp Expires August 2021 [Page 3]

RFC 8941 Structured Field Values for HTTP February 2021

1. Introduction

Specifying the syntax of new HTTP header (and trailer) fields is an onerous task; even with the guidance in
Section 8.3.1 of [RFC7231], there are many decisions -- and pitfalls -- for a prospective HTTP field author.

Once a field is defined, bespoke parsers and serializers often need to be written, because each field value has a
slightly different handling of what looks like common syntax.

This document introduces a set of common data structures for use in definitions of new HTTP field values
to address these problems. In particular, it defines a generic, abstract model for them, along with a concrete
serialization for expressing that model in HTTP [RFC7230] header and trailer fields.

An HTTP field that is defined as a "Structured Header" or "Structured Trailer" (if the field can be either, it is
a "Structured Field") uses the types defined in this specification to define its syntax and basic handling rules,
thereby simplifying both its definition by specification writers and handling by implementations.

Additionally, future versions of HTTP can define alternative serializations of the abstract model of these
structures, allowing fields that use that model to be transmitted more efficiently without being redefined.

Note that it is not a goal of this document to redefine the syntax of existing HTTP fields; the mechanisms
described herein are only intended to be used with fields that explicitly opt into them.

Section 2 describes how to specify a Structured Field.

Section 3 defines a number of abstract data types that can be used in Structured Fields.

Those abstract types can be serialized into and parsed from HTTP field values using the algorithms described in
Section 4.

1.1. Intentionally Strict Processing

This specification intentionally defines strict parsing and serialization behaviors using step-by-step algorithms;
the only error handling defined is to fail the operation altogether.

It is designed to encourage faithful implementation and good interoperability. Therefore, an implementation
that tried to be helpful by being more tolerant of input would make interoperability worse, since that would
create pressure on other implementations to implement similar (but likely subtly different) workarounds.

In other words, strict processing is an intentional feature of this specification; it allows non-conformant input
to be discovered and corrected by the producer early and avoids both interoperability and security issues that
might otherwise result.

Note that as a result of this strictness, if a field is appended to by multiple parties (e.g., intermediaries or
different components in the sender), an error in one party's value is likely to cause the entire field value to fail
parsing.

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals,
as shown here.

This document uses algorithms to specify parsing and serialization behaviors and the Augmented Backus-Naur
Form (ABNF) notation of [RFC5234] to illustrate expected syntax in HTTP header fields. In doing so, it uses
the VCHAR, SP, DIGIT, ALPHA, and DQUOTE rules from [RFC5234]. It also includes the tchar and OWS
rules from [RFC7230].

When parsing from HTTP fields, implementations MUST have behavior that is indistinguishable from
following the algorithms. If there is disagreement between the parsing algorithms and ABNF, the specified
algorithms take precedence.

Nottingham & Kamp Expires August 2021 [Page 4]

https://www.rfc-editor.org/rfc/rfc7231.html#section-8.3.1

RFC 8941 Structured Field Values for HTTP February 2021

For serialization to HTTP fields, the ABNF illustrates their expected wire representations, and the algorithms
define the recommended way to produce them. Implementations MAY vary from the specified behavior so
long as the output is still correctly handled by the parsing algorithm described in Section 4.2.

Nottingham & Kamp Expires August 2021 [Page 5]

RFC 8941 Structured Field Values for HTTP February 2021

2. Defining New Structured Fields

To specify an HTTP field as a Structured Field, its authors need to:

• Normatively reference this specification. Recipients and generators of the field need to know that the
requirements of this document are in effect.

• Identify whether the field is a Structured Header (i.e., it can only be used in the header section -- the
common case), a Structured Trailer (only in the trailer section), or a Structured Field (both).

• Specify the type of the field value; either List (Section 3.1), Dictionary (Section 3.2), or Item (Section 3.3).

• Define the semantics of the field value.

• Specify any additional constraints upon the field value, as well as the consequences when those constraints
are violated.

Typically, this means that a field definition will specify the top-level type -- List, Dictionary, or Item -- and
then define its allowable types and constraints upon them. For example, a header defined as a List might have
all Integer members, or a mix of types; a header defined as an Item might allow only Strings, and additionally
only strings beginning with the letter "Q", or strings in lowercase. Likewise, Inner Lists (Section 3.1.1) are only
valid when a field definition explicitly allows them.

When parsing fails, the entire field is ignored (see Section 4.2); in most situations, violating field-specific
constraints should have the same effect. Thus, if a header is defined as an Item and required to be an Integer,
but a String is received, the field will by default be ignored. If the field requires different error handling, this
should be explicitly specified.

Both Items and Inner Lists allow parameters as an extensibility mechanism; this means that values can later be
extended to accommodate more information, if need be. To preserve forward compatibility, field specifications
are discouraged from defining the presence of an unrecognized parameter as an error condition.

To further assure that this extensibility is available in the future, and to encourage consumers to use a
complete parser implementation, a field definition can specify that "grease" parameters be added by senders.
A specification could stipulate that all parameters that fit a defined pattern are reserved for this use and then
encourage them to be sent on some portion of requests. This helps to discourage recipients from writing a
parser that does not account for Parameters.

Specifications that use Dictionaries can also allow for forward compatibility by requiring that the presence of --
as well as value and type associated with -- unknown members be ignored. Subsequent specifications can then
add additional members, specifying constraints on them as appropriate.

An extension to a Structured Field can then require that an entire field value be ignored by a recipient that
understands the extension if constraints on the value it defines are not met.

A field definition cannot relax the requirements of this specification because doing so would preclude handling
by generic software; they can only add additional constraints (for example, on the numeric range of Integers
and Decimals, the format of Strings and Tokens, the types allowed in a Dictionary's values, or the number
of Items in a List). Likewise, field definitions can only use this specification for the entire field value, not a
portion thereof.

This specification defines minimums for the length or number of various structures supported by
implementations. It does not specify maximum sizes in most cases, but authors should be aware that HTTP
implementations do impose various limits on the size of individual fields, the total number of fields, and/or the
size of the entire header or trailer section.

Specifications can refer to a field name as a "structured header name", "structured trailer name", or "structured
field name" as appropriate. Likewise, they can refer its field value as a "structured header value", "structured
trailer value", or "structured field value" as necessary. Field definitions are encouraged to use the ABNF rules
beginning with "sf-" defined in this specification; other rules in this specification are not intended to be used in
field definitions.

For example, a fictitious Foo-Example header field might be specified as:

Nottingham & Kamp Expires August 2021 [Page 6]

RFC 8941 Structured Field Values for HTTP February 2021

42. Foo-Example Header

The Foo-Example HTTP header field conveys information about how much Foo the message has.

Foo-Example is an Item Structured Header [RFC8941]. Its value MUST be an Integer (Section 3.3.1 of
[RFC8941]). Its ABNF is:

 Foo-Example = sf-integer

Its value indicates the amount of Foo in the message, and it MUST be between 0 and 10, inclusive; other
values MUST cause the entire header field to be ignored.

The following parameter is defined:

• A parameter whose key is "foourl", and whose value is a String (Section 3.3.3 of [RFC8941]), conveying
the Foo URL for the message. See below for processing requirements.

"foourl" contains a URI-reference (Section 4.1 of [RFC3986]). If its value is not a valid URI-reference,
the entire header field MUST be ignored. If its value is a relative reference (Section 4.2 of [RFC3986]), it
MUST be resolved (Section 5 of [RFC3986]) before being used.

For example:

 Foo-Example: 2; foourl="https://foo.example.com/"

Nottingham & Kamp Expires August 2021 [Page 7]

RFC 8941 Structured Field Values for HTTP February 2021

3. Structured Data Types

This section defines the abstract types for Structured Fields. The ABNF provided represents the on-wire format
in HTTP field values.

In summary:

• There are three top-level types that an HTTP field can be defined as: Lists, Dictionaries, and Items.

• Lists and Dictionaries are containers; their members can be Items or Inner Lists (which are themselves
arrays of Items).

• Both Items and Inner Lists can be Parameterized with key/value pairs.

3.1. Lists

Lists are arrays of zero or more members, each of which can be an Item (Section 3.3) or an Inner List (Section
3.1.1), both of which can be Parameterized (Section 3.1.2).

The ABNF for Lists in HTTP fields is:

sf-list = list-member *(OWS "," OWS list-member)
list-member = sf-item / inner-list

Each member is separated by a comma and optional whitespace. For example, a field whose value is defined as
a List of Tokens could look like:

Example-List: sugar, tea, rum

An empty List is denoted by not serializing the field at all. This implies that fields defined as Lists have a
default empty value.

Note that Lists can have their members split across multiple lines of the same header or trailer section, as per
Section 3.2.2 of [RFC7230]; for example, the following are equivalent:

Example-List: sugar, tea, rum

and

Example-List: sugar, tea
Example-List: rum

However, individual members of a List cannot be safely split between lines; see Section 4.2 for details.

Parsers MUST support Lists containing at least 1024 members. Field specifications can constrain the types and
cardinality of individual List values as they require.

3.1.1. Inner Lists

An Inner List is an array of zero or more Items (Section 3.3). Both the individual Items and the Inner List itself
can be Parameterized (Section 3.1.2).

The ABNF for Inner Lists is:

inner-list = "(" *SP [sf-item *(1*SP sf-item) *SP] ")"
 parameters

Inner Lists are denoted by surrounding parenthesis, and their values are delimited by one or more spaces. A
field whose value is defined as a List of Inner Lists of Strings could look like:

Example-List: ("foo" "bar"), ("baz"), ("bat" "one"), ()

Nottingham & Kamp Expires August 2021 [Page 8]

https://www.rfc-editor.org/rfc/rfc7230.html#section-3.2.2

RFC 8941 Structured Field Values for HTTP February 2021

Note that the last member in this example is an empty Inner List.

A header field whose value is defined as a List of Inner Lists with Parameters at both levels could look like:

Example-List: ("foo"; a=1;b=2);lvl=5, ("bar" "baz");lvl=1

Parsers MUST support Inner Lists containing at least 256 members. Field specifications can constrain the types
and cardinality of individual Inner List members as they require.

3.1.2. Parameters

Parameters are an ordered map of key-value pairs that are associated with an Item (Section 3.3) or Inner List
(Section 3.1.1). The keys are unique within the scope of the Parameters they occur within, and the values are
bare items (i.e., they themselves cannot be parameterized; see Section 3.3).

Implementations MUST provide access to Parameters both by index and by key. Specifications MAY use
either means of accessing them.

The ABNF for Parameters is:

parameters = *(";" *SP parameter)
parameter = param-key ["=" param-value]
param-key = key
key = (lcalpha / "*")
 (lcalpha / DIGIT / "_" / "-" / "." / "")
lcalpha = %x61-7A ; a-z
param-value = bare-item

Note that parameters are ordered as serialized, and parameter keys cannot contain uppercase letters. A
parameter is separated from its Item or Inner List and other parameters by a semicolon. For example:

Example-List: abc;a=1;b=2; cde_456, (ghi;jk=4 l);q="9";r=w

Parameters whose value is Boolean (see Section 3.3.6) true MUST omit that value when serialized. For
example, the "a" parameter here is true, while the "b" parameter is false:

Example-Integer: 1; a; b=?0

Note that this requirement is only on serialization; parsers are still required to correctly handle the true value
when it appears in a parameter.

Parsers MUST support at least 256 parameters on an Item or Inner List, and support parameter keys with at
least 64 characters. Field specifications can constrain the order of individual parameters, as well as their values'
types as required.

3.2. Dictionaries

Dictionaries are ordered maps of key-value pairs, where the keys are short textual strings and the values are
Items (Section 3.3) or arrays of Items, both of which can be Parameterized (Section 3.1.2). There can be zero or
more members, and their keys are unique in the scope of the Dictionary they occur within.

Implementations MUST provide access to Dictionaries both by index and by key. Specifications MAY use
either means of accessing the members.

The ABNF for Dictionaries is:

Nottingham & Kamp Expires August 2021 [Page 9]

RFC 8941 Structured Field Values for HTTP February 2021

sf-dictionary = dict-member *(OWS "," OWS dict-member)
dict-member = member-key (parameters / ("=" member-value))
member-key = key
member-value = sf-item / inner-list

Members are ordered as serialized and separated by a comma with optional whitespace. Member keys cannot
contain uppercase characters. Keys and values are separated by "=" (without whitespace). For example:

Example-Dict: en="Applepie", da=:w4ZibGV0w6ZydGU=:

Note that in this example, the final "=" is due to the inclusion of a Byte Sequence; see Section 3.3.5.

Members whose value is Boolean (see Section 3.3.6) true MUST omit that value when serialized. For example,
here both "b" and "c" are true:

Example-Dict: a=?0, b, c; foo=bar

Note that this requirement is only on serialization; parsers are still required to correctly handle the true Boolean
value when it appears in Dictionary values.

A Dictionary with a member whose value is an Inner List of Tokens:

Example-Dict: rating=1.5, feelings=(joy sadness)

A Dictionary with a mix of Items and Inner Lists, some with parameters:

Example-Dict: a=(1 2), b=3, c=4;aa=bb, d=(5 6);valid

As with Lists, an empty Dictionary is represented by omitting the entire field. This implies that fields defined
as Dictionaries have a default empty value.

Typically, a field specification will define the semantics of Dictionaries by specifying the allowed type(s)
for individual members by their keys, as well as whether their presence is required or optional. Recipients
MUST ignore members whose keys that are undefined or unknown, unless the field's specification specifically
disallows them.

Note that Dictionaries can have their members split across multiple lines of the same header or trailer section;
for example, the following are equivalent:

Example-Dict: foo=1, bar=2

and

Example-Dict: foo=1
Example-Dict: bar=2

However, individual members of a Dictionary cannot be safely split between lines; see Section 4.2 for details.

Parsers MUST support Dictionaries containing at least 1024 key/value pairs and keys with at least 64
characters. Field specifications can constrain the order of individual Dictionary members, as well as their
values' types as required.

3.3. Items

An Item can be an Integer (Section 3.3.1), a Decimal (Section 3.3.2), a String (Section 3.3.3), a Token (Section
3.3.4), a Byte Sequence (Section 3.3.5), or a Boolean (Section 3.3.6). It can have associated parameters
(Section 3.1.2).

The ABNF for Items is:

Nottingham & Kamp Expires August 2021 [Page 10]

RFC 8941 Structured Field Values for HTTP February 2021

sf-item = bare-item parameters
bare-item = sf-integer / sf-decimal / sf-string / sf-token
 / sf-binary / sf-boolean

For example, a header field that is defined to be an Item that is an Integer might look like:

Example-Integer: 5

or with parameters:

Example-Integer: 5; foo=bar

3.3.1. Integers

Integers have a range of -999,999,999,999,999 to 999,999,999,999,999 inclusive (i.e., up to fifteen digits,
signed), for IEEE 754 compatibility [IEEE754].

The ABNF for Integers is:

sf-integer = ["-"] 1*15DIGIT

For example:

Example-Integer: 42

Integers larger than 15 digits can be supported in a variety of ways; for example, by using a String (Section
3.3.3), a Byte Sequence (Section 3.3.5), or a parameter on an Integer that acts as a scaling factor.

While it is possible to serialize Integers with leading zeros (e.g., "0002", "-01") and signed zero ("-0"), these
distinctions may not be preserved by implementations.

Note that commas in Integers are used in this section's prose only for readability; they are not valid in the wire
format.

3.3.2. Decimals

Decimals are numbers with an integer and a fractional component. The integer component has at most 12
digits; the fractional component has at most three digits.

The ABNF for decimals is:

sf-decimal = ["-"] 1*12DIGIT "." 1*3DIGIT

For example, a header whose value is defined as a Decimal could look like:

Example-Decimal: 4.5

While it is possible to serialize Decimals with leading zeros (e.g., "0002.5", "-01.334"), trailing zeros (e.g.,
"5.230", "-0.40"), and signed zero (e.g., "-0.0"), these distinctions may not be preserved by implementations.

Note that the serialization algorithm (Section 4.1.5) rounds input with more than three digits of precision in
the fractional component. If an alternative rounding strategy is desired, this should be specified by the header
definition to occur before serialization.

3.3.3. Strings

Strings are zero or more printable ASCII [RFC0020] characters (i.e., the range %x20 to %x7E). Note that this
excludes tabs, newlines, carriage returns, etc.

The ABNF for Strings is:

Nottingham & Kamp Expires August 2021 [Page 11]

RFC 8941 Structured Field Values for HTTP February 2021

sf-string = DQUOTE *chr DQUOTE
chr = unescaped / escaped
unescaped = %x20-21 / %x23-5B / %x5D-7E
escaped = "\" (DQUOTE / "\")

Strings are delimited with double quotes, using a backslash ("\") to escape double quotes and backslashes. For
example:

Example-String: "hello world"

Note that Strings only use DQUOTE as a delimiter; single quotes do not delimit Strings. Furthermore, only
DQUOTE and "\" can be escaped; other characters after "\" MUST cause parsing to fail.

Unicode is not directly supported in Strings, because it causes a number of interoperability issues, and -- with
few exceptions -- field values do not require it.

When it is necessary for a field value to convey non-ASCII content, a Byte Sequence (Section 3.3.5) can be
specified, along with a character encoding (preferably UTF-8 [STD63]).

Parsers MUST support Strings (after any decoding) with at least 1024 characters.

3.3.4. Tokens

Tokens are short textual words; their abstract model is identical to their expression in the HTTP field value
serialization.

The ABNF for Tokens is:

sf-token = (ALPHA / "*") *(tchar / ":" / "/")

For example:

Example-Token: foo123/456

Parsers MUST support Tokens with at least 512 characters.

Note that Token allows the same characters as the "token" ABNF rule defined in [RFC7230], with the
exceptions that the first character is required to be either ALPHA or "*", and ":" and "/" are also allowed in
subsequent characters.

3.3.5. Byte Sequences

Byte Sequences can be conveyed in Structured Fields.

The ABNF for a Byte Sequence is:

sf-binary = ":" *(base64) ":"
base64 = ALPHA / DIGIT / "+" / "/" / "="

A Byte Sequence is delimited with colons and encoded using base64 ([RFC4648], Section 4). For example:

Example-ByteSequence: :cHJldGVuZCB0aGlzIGlzIGJpbmFyeSBjb250ZW50Lg==:

Parsers MUST support Byte Sequences with at least 16384 octets after decoding.

3.3.6. Booleans

Boolean values can be conveyed in Structured Fields.

The ABNF for a Boolean is:

Nottingham & Kamp Expires August 2021 [Page 12]

https://www.rfc-editor.org/rfc/rfc4648.html#section-4

RFC 8941 Structured Field Values for HTTP February 2021

sf-boolean = "?" boolean
boolean = "0" / "1"

A Boolean is indicated with a leading "?" character followed by a "1" for a true value or "0" for false. For
example:

Example-Boolean: ?1

Note that in Dictionary (Section 3.2) and Parameter (Section 3.1.2) values, Boolean true is indicated by
omitting the value.

Nottingham & Kamp Expires August 2021 [Page 13]

RFC 8941 Structured Field Values for HTTP February 2021

4. Working with Structured Fields in HTTP

This section defines how to serialize and parse Structured Fields in textual HTTP field values and other
encodings compatible with them (e.g., in HTTP/2 [RFC7540] before compression with HPACK [RFC7541]).

4.1. Serializing Structured Fields

Given a structure defined in this specification, return an ASCII string suitable for use in an HTTP field value.

1. If the structure is a Dictionary or List and its value is empty (i.e., it has no members), do not serialize the
field at all (i.e., omit both the field-name and field-value).

2. If the structure is a List, let output_string be the result of running Serializing a List (Section 4.1.1) with the
structure.

3. Else, if the structure is a Dictionary, let output_string be the result of running Serializing a Dictionary
(Section 4.1.2) with the structure.

4. Else, if the structure is an Item, let output_string be the result of running Serializing an Item (Section 4.1.3)
with the structure.

5. Else, fail serialization.

6. Return output_string converted into an array of bytes, using ASCII encoding [RFC0020].

4.1.1. Serializing a List

Given an array of (member_value, parameters) tuples as input_list, return an ASCII string suitable for use in an
HTTP field value.

1. Let output be an empty string.

2. For each (member_value, parameters) of input_list:

3. Return output.

4.1.1.1. Serializing an Inner List

Given an array of (member_value, parameters) tuples as inner_list, and parameters as list_parameters, return an
ASCII string suitable for use in an HTTP field value.

1. Let output be the string "(".

2. For each (member_value, parameters) of inner_list:

3. Append ")" to output.

4. Append the result of running Serializing Parameters (Section 4.1.1.2) with list_parameters to output.

5. Return output.

4.1.1.2. Serializing Parameters

Given an ordered Dictionary as input_parameters (each member having a param_key and a param_value),
return an ASCII string suitable for use in an HTTP field value.

1. Let output be an empty string.

2. For each param_key with a value of param_value in input_parameters:

3. Return output.

4.1.1.3. Serializing a Key

Given a key as input_key, return an ASCII string suitable for use in an HTTP field value.

1. Convert input_key into a sequence of ASCII characters; if conversion fails, fail serialization.

2. If input_key contains characters not in lcalpha, DIGIT, "_", "-", ".", or "*", fail serialization.

3. If the first character of input_key is not lcalpha or "*", fail serialization.

Nottingham & Kamp Expires August 2021 [Page 14]

RFC 8941 Structured Field Values for HTTP February 2021

4. Let output be an empty string.

5. Append input_key to output.

6. Return output.

4.1.2. Serializing a Dictionary

Given an ordered Dictionary as input_dictionary (each member having a member_key and a tuple value of
(member_value, parameters)), return an ASCII string suitable for use in an HTTP field value.

1. Let output be an empty string.

2. For each member_key with a value of (member_value, parameters) in input_dictionary:

3. Return output.

4.1.3. Serializing an Item

Given an Item as bare_item and Parameters as item_parameters, return an ASCII string suitable for use in an
HTTP field value.

1. Let output be an empty string.

2. Append the result of running Serializing a Bare Item (Section 4.1.3.1) with bare_item to output.

3. Append the result of running Serializing Parameters (Section 4.1.1.2) with item_parameters to output.

4. Return output.

4.1.3.1. Serializing a Bare Item

Given an Item as input_item, return an ASCII string suitable for use in an HTTP field value.

1. If input_item is an Integer, return the result of running Serializing an Integer (Section 4.1.4) with
input_item.

2. If input_item is a Decimal, return the result of running Serializing a Decimal (Section 4.1.5) with
input_item.

3. If input_item is a String, return the result of running Serializing a String (Section 4.1.6) with input_item.

4. If input_item is a Token, return the result of running Serializing a Token (Section 4.1.7) with input_item.

5. If input_item is a Byte Sequence, return the result of running Serializing a Byte Sequence (Section 4.1.8)
with input_item.

6. If input_item is a Boolean, return the result of running Serializing a Boolean (Section 4.1.9) with
input_item.

7. Otherwise, fail serialization.

4.1.4. Serializing an Integer

Given an Integer as input_integer, return an ASCII string suitable for use in an HTTP field value.

1. If input_integer is not an integer in the range of -999,999,999,999,999 to 999,999,999,999,999 inclusive,
fail serialization.

2. Let output be an empty string.

3. If input_integer is less than (but not equal to) 0, append "-" to output.

4. Append input_integer's numeric value represented in base 10 using only decimal digits to output.

5. Return output.

4.1.5. Serializing a Decimal

Given a decimal number as input_decimal, return an ASCII string suitable for use in an HTTP field value.

1. If input_decimal is not a decimal number, fail serialization.

Nottingham & Kamp Expires August 2021 [Page 15]

RFC 8941 Structured Field Values for HTTP February 2021

2. If input_decimal has more than three significant digits to the right of the decimal point, round it to three
decimal places, rounding the final digit to the nearest value, or to the even value if it is equidistant.

3. If input_decimal has more than 12 significant digits to the left of the decimal point after rounding, fail
serialization.

4. Let output be an empty string.

5. If input_decimal is less than (but not equal to) 0, append "-" to output.

6. Append input_decimal's integer component represented in base 10 (using only decimal digits) to output; if
it is zero, append "0".

7. Append "." to output.

8. If input_decimal's fractional component is zero, append "0" to output.

9. Otherwise, append the significant digits of input_decimal's fractional component represented in base 10
(using only decimal digits) to output.

10. Return output.

4.1.6. Serializing a String

Given a String as input_string, return an ASCII string suitable for use in an HTTP field value.

1. Convert input_string into a sequence of ASCII characters; if conversion fails, fail serialization.

2. If input_string contains characters in the range %x00-1f or %x7f-ff (i.e., not in VCHAR or SP), fail
serialization.

3. Let output be the string DQUOTE.

4. For each character char in input_string:

5. Append DQUOTE to output.

6. Return output.

4.1.7. Serializing a Token

Given a Token as input_token, return an ASCII string suitable for use in an HTTP field value.

1. Convert input_token into a sequence of ASCII characters; if conversion fails, fail serialization.

2. If the first character of input_token is not ALPHA or "*", or the remaining portion contains a character not
in tchar, ":", or "/", fail serialization.

3. Let output be an empty string.

4. Append input_token to output.

5. Return output.

4.1.8. Serializing a Byte Sequence

Given a Byte Sequence as input_bytes, return an ASCII string suitable for use in an HTTP field value.

1. If input_bytes is not a sequence of bytes, fail serialization.

2. Let output be an empty string.

3. Append ":" to output.

4. Append the result of base64-encoding input_bytes as per [RFC4648], Section 4, taking account of the
requirements below.

5. Append ":" to output.

6. Return output.

The encoded data is required to be padded with "=", as per [RFC4648], Section 3.2.

Likewise, encoded data SHOULD have pad bits set to zero, as per [RFC4648], Section 3.5, unless it is not
possible to do so due to implementation constraints.

Nottingham & Kamp Expires August 2021 [Page 16]

https://www.rfc-editor.org/rfc/rfc4648.html#section-4
https://www.rfc-editor.org/rfc/rfc4648.html#section-3.2
https://www.rfc-editor.org/rfc/rfc4648.html#section-3.5

RFC 8941 Structured Field Values for HTTP February 2021

4.1.9. Serializing a Boolean

Given a Boolean as input_boolean, return an ASCII string suitable for use in an HTTP field value.

1. If input_boolean is not a boolean, fail serialization.

2. Let output be an empty string.

3. Append "?" to output.

4. If input_boolean is true, append "1" to output.

5. If input_boolean is false, append "0" to output.

6. Return output.

4.2. Parsing Structured Fields

When a receiving implementation parses HTTP fields that are known to be Structured Fields, it is important
that care be taken, as there are a number of edge cases that can cause interoperability or even security problems.
This section specifies the algorithm for doing so.

Given an array of bytes as input_bytes that represent the chosen field's field-value (which is empty if that field
is not present) and field_type (one of "dictionary", "list", or "item"), return the parsed header value.

1. Convert input_bytes into an ASCII string input_string; if conversion fails, fail parsing.

2. Discard any leading SP characters from input_string.

3. If field_type is "list", let output be the result of running Parsing a List (Section 4.2.1) with input_string.

4. If field_type is "dictionary", let output be the result of running Parsing a Dictionary (Section 4.2.2) with
input_string.

5. If field_type is "item", let output be the result of running Parsing an Item (Section 4.2.3) with input_string.

6. Discard any leading SP characters from input_string.

7. If input_string is not empty, fail parsing.

8. Otherwise, return output.

When generating input_bytes, parsers MUST combine all field lines in the same section (header or trailer)
that case-insensitively match the field name into one comma-separated field-value, as per [RFC7230], Section
3.2.2; this assures that the entire field value is processed correctly.

For Lists and Dictionaries, this has the effect of correctly concatenating all of the field's lines, as long as
individual members of the top-level data structure are not split across multiple header instances. The parsing
algorithms for both types allow tab characters, since these might be used to combine field lines by some
implementations.

Strings split across multiple field lines will have unpredictable results, because one or more commas (with
optional whitespace) will become part of the string output by the parser. Since concatenation might be done by
an upstream intermediary, the results are not under the control of the serializer or the parser, even when they
are both under the control of the same party.

Tokens, Integers, Decimals, and Byte Sequences cannot be split across multiple field lines because the inserted
commas will cause parsing to fail.

Parsers MAY fail when processing a field value spread across multiple field lines, when one of those lines does
not parse as that field. For example, a parsing handling an Example-String field that's defined as an sf-string is
allowed to fail when processing this field section:

Example-String: "foo
Example-String: bar"

If parsing fails -- including when calling another algorithm -- the entire field value MUST be ignored (i.e.,
treated as if the field were not present in the section). This is intentionally strict, to improve interoperability and
safety, and specifications referencing this document are not allowed to loosen this requirement.

Nottingham & Kamp Expires August 2021 [Page 17]

https://www.rfc-editor.org/rfc/rfc7230.html#section-3.2.2
https://www.rfc-editor.org/rfc/rfc7230.html#section-3.2.2

RFC 8941 Structured Field Values for HTTP February 2021

Note that this requirement does not apply to an implementation that is not parsing the field; for example, an
intermediary is not required to strip a failing field from a message before forwarding it.

4.2.1. Parsing a List

Given an ASCII string as input_string, return an array of (item_or_inner_list, parameters) tuples. input_string is
modified to remove the parsed value.

1. Let members be an empty array.

2. While input_string is not empty:

3. No structured data has been found; return members (which is empty).

4.2.1.1. Parsing an Item or Inner List

Given an ASCII string as input_string, return the tuple (item_or_inner_list, parameters), where
item_or_inner_list can be either a single bare item or an array of (bare_item, parameters) tuples. input_string is
modified to remove the parsed value.

1. If the first character of input_string is "(", return the result of running Parsing an Inner List (Section 4.2.1.2)
with input_string.

2. Return the result of running Parsing an Item (Section 4.2.3) with input_string.

4.2.1.2. Parsing an Inner List

Given an ASCII string as input_string, return the tuple (inner_list, parameters), where inner_list is an array of
(bare_item, parameters) tuples. input_string is modified to remove the parsed value.

1. Consume the first character of input_string; if it is not "(", fail parsing.

2. Let inner_list be an empty array.

3. While input_string is not empty:

4. The end of the Inner List was not found; fail parsing.

4.2.2. Parsing a Dictionary

Given an ASCII string as input_string, return an ordered map whose values are (item_or_inner_list,
parameters) tuples. input_string is modified to remove the parsed value.

1. Let dictionary be an empty, ordered map.

2. While input_string is not empty:

3. No structured data has been found; return dictionary (which is empty).

Note that when duplicate Dictionary keys are encountered, all but the last instance are ignored.

4.2.3. Parsing an Item

Given an ASCII string as input_string, return a (bare_item, parameters) tuple. input_string is modified to
remove the parsed value.

1. Let bare_item be the result of running Parsing a Bare Item (Section 4.2.3.1) with input_string.

2. Let parameters be the result of running Parsing Parameters (Section 4.2.3.2) with input_string.

3. Return the tuple (bare_item, parameters).

4.2.3.1. Parsing a Bare Item

Given an ASCII string as input_string, return a bare Item. input_string is modified to remove the parsed value.

1. If the first character of input_string is a "-" or a DIGIT, return the result of running Parsing an Integer or
Decimal (Section 4.2.4) with input_string.

Nottingham & Kamp Expires August 2021 [Page 18]

RFC 8941 Structured Field Values for HTTP February 2021

2. If the first character of input_string is a DQUOTE, return the result of running Parsing a String (Section
4.2.5) with input_string.

3. If the first character of input_string is an ALPHA or "*", return the result of running Parsing a Token
(Section 4.2.6) with input_string.

4. If the first character of input_string is ":", return the result of running Parsing a Byte Sequence (Section
4.2.7) with input_string.

5. If the first character of input_string is "?", return the result of running Parsing a Boolean (Section 4.2.8)
with input_string.

6. Otherwise, the item type is unrecognized; fail parsing.

4.2.3.2. Parsing Parameters

Given an ASCII string as input_string, return an ordered map whose values are bare Items. input_string is
modified to remove the parsed value.

1. Let parameters be an empty, ordered map.

2. While input_string is not empty:

3. Return parameters.

Note that when duplicate parameter keys are encountered, all but the last instance are ignored.

4.2.3.3. Parsing a Key

Given an ASCII string as input_string, return a key. input_string is modified to remove the parsed value.

1. If the first character of input_string is not lcalpha or "*", fail parsing.

2. Let output_string be an empty string.

3. While input_string is not empty:

4. Return output_string.

4.2.4. Parsing an Integer or Decimal

Given an ASCII string as input_string, return an Integer or Decimal. input_string is modified to remove the
parsed value.

NOTE: This algorithm parses both Integers (Section 3.3.1) and Decimals (Section 3.3.2), and returns the
corresponding structure.

1. Let type be "integer".

2. Let sign be 1.

3. Let input_number be an empty string.

4. If the first character of input_string is "-", consume it and set sign to -1.

5. If input_string is empty, there is an empty integer; fail parsing.

6. If the first character of input_string is not a DIGIT, fail parsing.

7. While input_string is not empty:

8. If type is "integer":

9. Otherwise:

10. Return output_number.

4.2.5. Parsing a String

Given an ASCII string as input_string, return an unquoted String. input_string is modified to remove the parsed
value.

1. Let output_string be an empty string.

Nottingham & Kamp Expires August 2021 [Page 19]

RFC 8941 Structured Field Values for HTTP February 2021

2. If the first character of input_string is not DQUOTE, fail parsing.

3. Discard the first character of input_string.

4. While input_string is not empty:

5. Reached the end of input_string without finding a closing DQUOTE; fail parsing.

4.2.6. Parsing a Token

Given an ASCII string as input_string, return a Token. input_string is modified to remove the parsed value.

1. If the first character of input_string is not ALPHA or "*", fail parsing.

2. Let output_string be an empty string.

3. While input_string is not empty:

4. Return output_string.

4.2.7. Parsing a Byte Sequence

Given an ASCII string as input_string, return a Byte Sequence. input_string is modified to remove the parsed
value.

1. If the first character of input_string is not ":", fail parsing.

2. Discard the first character of input_string.

3. If there is not a ":" character before the end of input_string, fail parsing.

4. Let b64_content be the result of consuming content of input_string up to but not including the first instance
of the character ":".

5. Consume the ":" character at the beginning of input_string.

6. If b64_content contains a character not included in ALPHA, DIGIT, "+", "/", and "=", fail parsing.

7. Let binary_content be the result of base64-decoding [RFC4648] b64_content, synthesizing padding if
necessary (note the requirements about recipient behavior below). If base64 decoding fails, parsing fails.

8. Return binary_content.

Because some implementations of base64 do not allow rejection of encoded data that is not properly "="
padded (see [RFC4648], Section 3.2), parsers SHOULD NOT fail when "=" padding is not present, unless they
cannot be configured to do so.

Because some implementations of base64 do not allow rejection of encoded data that has non-zero pad bits (see
[RFC4648], Section 3.5), parsers SHOULD NOT fail when non-zero pad bits are present, unless they cannot be
configured to do so.

This specification does not relax the requirements in [RFC4648], Sections 3.1 and 3.3; therefore, parsers
MUST fail on characters outside the base64 alphabet and on line feeds in encoded data.

4.2.8. Parsing a Boolean

Given an ASCII string as input_string, return a Boolean. input_string is modified to remove the parsed value.

1. If the first character of input_string is not "?", fail parsing.

2. Discard the first character of input_string.

3. If the first character of input_string matches "1", discard the first character, and return true.

4. If the first character of input_string matches "0", discard the first character, and return false.

5. No value has matched; fail parsing.

Nottingham & Kamp Expires August 2021 [Page 20]

https://www.rfc-editor.org/rfc/rfc4648.html#section-3.2
https://www.rfc-editor.org/rfc/rfc4648.html#section-3.5
https://www.rfc-editor.org/rfc/rfc4648.html#section-3.1
https://www.rfc-editor.org/rfc/rfc4648.html#section-3.3

RFC 8941 Structured Field Values for HTTP February 2021

5. IANA Considerations

This document has no IANA actions.

Nottingham & Kamp Expires August 2021 [Page 21]

RFC 8941 Structured Field Values for HTTP February 2021

6. Security Considerations

The size of most types defined by Structured Fields is not limited; as a result, extremely large fields could be an
attack vector (e.g., for resource consumption). Most HTTP implementations limit the sizes of individual fields
as well as the overall header or trailer section size to mitigate such attacks.

It is possible for parties with the ability to inject new HTTP fields to change the meaning of a Structured
Field. In some circumstances, this will cause parsing to fail, but it is not possible to reliably fail in all such
circumstances.

Nottingham & Kamp Expires August 2021 [Page 22]

RFC 8941 Structured Field Values for HTTP February 2021

7. References

7.1. Normative References

[RFC0020] Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI 10.17487/RFC0020,
October 1969, <https://www.rfc-editor.org/info/rfc20>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/
RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC
5234, DOI 10.17487/RFC5234, January 2008, <https://www.rfc-editor.org/info/rfc5234>.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174,
DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", DOI 10.1109/IEEESTD.2019.8766229, IEEE
754-2019, July 2019, <https://ieeexplore.ieee.org/document/8766229>.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/info/rfc7231>.

[RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493, March 2015,
<https://www.rfc-editor.org/info/rfc7493>.

[RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC
7540, DOI 10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/info/rfc7540>.

[RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for HTTP/2", RFC 7541, DOI 10.17487/
RFC7541, May 2015, <https://www.rfc-editor.org/info/rfc7541>.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017, <https://www.rfc-editor.org/info/rfc8259>.

[STD63] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003,
<https://www.rfc-editor.org/info/std63>.

Nottingham & Kamp Expires August 2021 [Page 23]

https://www.rfc-editor.org/rfc/rfc20.html
https://www.rfc-editor.org/info/std80
https://dx.doi.org/10.17487/RFC0020
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc4648.html
https://dx.doi.org/10.17487/RFC4648
https://dx.doi.org/10.17487/RFC4648
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/info/std68
https://dx.doi.org/10.17487/RFC5234
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7230.html
https://dx.doi.org/10.17487/RFC7230
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC8174
https://ieeexplore.ieee.org/document/8766229
https://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://dx.doi.org/10.17487/RFC7231
https://www.rfc-editor.org/rfc/rfc7493.html
https://dx.doi.org/10.17487/RFC7493
https://www.rfc-editor.org/rfc/rfc7540.html
https://dx.doi.org/10.17487/RFC7540
https://www.rfc-editor.org/rfc/rfc7541.html
https://dx.doi.org/10.17487/RFC7541
https://dx.doi.org/10.17487/RFC7541
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/info/std90
https://dx.doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/std63
https://www.rfc-editor.org/info/std63

RFC 8941 Structured Field Values for HTTP February 2021

Appendix A. Frequently Asked Questions

A.1. Why Not JSON?

Earlier proposals for Structured Fields were based upon JSON [RFC8259]. However, constraining its use
to make it suitable for HTTP header fields required senders and recipients to implement specific additional
handling.

For example, JSON has specification issues around large numbers and objects with duplicate members.
Although advice for avoiding these issues is available (e.g., [RFC7493]), it cannot be relied upon.

Likewise, JSON strings are by default Unicode strings, which have a number of potential interoperability issues
(e.g., in comparison). Although implementers can be advised to avoid non-ASCII content where unnecessary,
this is difficult to enforce.

Another example is JSON's ability to nest content to arbitrary depths. Since the resulting memory commitment
might be unsuitable (e.g., in embedded and other limited server deployments), it's necessary to limit it in some
fashion; however, existing JSON implementations have no such limits, and even if a limit is specified, it's
likely that some field definition will find a need to violate it.

Because of JSON's broad adoption and implementation, it is difficult to impose such additional constraints
across all implementations; some deployments would fail to enforce them, thereby harming interoperability. In
short, if it looks like JSON, people will be tempted to use a JSON parser/serializer on field values.

Since a major goal for Structured Fields is to improve interoperability and simplify implementation, these
concerns led to a format that requires a dedicated parser and serializer.

Additionally, there were widely shared feelings that JSON doesn't "look right" in HTTP fields.

Nottingham & Kamp Expires August 2021 [Page 24]

RFC 8941 Structured Field Values for HTTP February 2021

Appendix B. Implementation Notes

A generic implementation of this specification should expose the top-level serialize (Section 4.1) and parse
(Section 4.2) functions. They need not be functions; for example, it could be implemented as an object, with
methods for each of the different top-level types.

For interoperability, it's important that generic implementations be complete and follow the algorithms closely;
see Section 1.1. To aid this, a common test suite is being maintained by the community at <https://github.com/h
ttpwg/structured-field-tests>.

Implementers should note that Dictionaries and Parameters are order-preserving maps. Some fields may not
convey meaning in the ordering of these data types, but it should still be exposed so that it will be available to
applications that need to use it.

Likewise, implementations should note that it's important to preserve the distinction between Tokens and
Strings. While most programming languages have native types that map to the other types well, it may be
necessary to create a wrapper "token" object or use a parameter on functions to assure that these types remain
separate.

The serialization algorithm is defined in a way that it is not strictly limited to the data types defined in Section
3 in every case. For example, Decimals are designed to take broader input and round to allowed values.

Implementations are allowed to limit the size of different structures, subject to the minimums defined for each
type. When a structure exceeds an implementation limit, that structure fails parsing or serialization.

Nottingham & Kamp Expires August 2021 [Page 25]

https://github.com/httpwg/structured-field-tests
https://github.com/httpwg/structured-field-tests

RFC 8941 Structured Field Values for HTTP February 2021

Acknowledgements

Many thanks to Matthew Kerwin for his detailed feedback and careful consideration during the development of
this specification.

Thanks also to Ian Clelland, Roy Fielding, Anne van Kesteren, Kazuho Oku, Evert Pot, Julian Reschke, Martin
Thomson, Mike West, and Jeffrey Yasskin for their contributions.

Nottingham & Kamp Expires August 2021 [Page 26]

Authors' Addresses

Mark Nottingham
Fastly
Prahran, VIC
Australia
EMail: mnot@mnot.net
URI: https://www.mnot.net/

Poul-Henning Kamp
The Varnish Cache Project
EMail: phk@varnish-cache.org

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:phk@varnish-cache.org

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Intentionally Strict Processing
	1.2 Notational Conventions

	2 Defining New Structured Fields
	3 Structured Data Types
	3.1 Lists
	3.1.1 Inner Lists
	3.1.2 Parameters

	3.2 Dictionaries
	3.3 Items
	3.3.1 Integers
	3.3.2 Decimals
	3.3.3 Strings
	3.3.4 Tokens
	3.3.5 Byte Sequences
	3.3.6 Booleans

	4 Working with Structured Fields in HTTP
	4.1 Serializing Structured Fields
	4.1.1 Serializing a List
	4.1.1.1 Serializing an Inner List
	4.1.1.2 Serializing Parameters
	4.1.1.3 Serializing a Key

	4.1.2 Serializing a Dictionary
	4.1.3 Serializing an Item
	4.1.3.1 Serializing a Bare Item

	4.1.4 Serializing an Integer
	4.1.5 Serializing a Decimal
	4.1.6 Serializing a String
	4.1.7 Serializing a Token
	4.1.8 Serializing a Byte Sequence
	4.1.9 Serializing a Boolean

	4.2 Parsing Structured Fields
	4.2.1 Parsing a List
	4.2.1.1 Parsing an Item or Inner List
	4.2.1.2 Parsing an Inner List

	4.2.2 Parsing a Dictionary
	4.2.3 Parsing an Item
	4.2.3.1 Parsing a Bare Item
	4.2.3.2 Parsing Parameters
	4.2.3.3 Parsing a Key

	4.2.4 Parsing an Integer or Decimal
	4.2.5 Parsing a String
	4.2.6 Parsing a Token
	4.2.7 Parsing a Byte Sequence
	4.2.8 Parsing a Boolean

	5 IANA Considerations
	6 Security Considerations
	7 References
	7.1 Normative References
	7.2 Informative References

	Appendix A Frequently Asked Questions
	A.1 Why Not JSON?

	Appendix B Implementation Notes
	Acknowledgements
	Authors' Addresses

