
Internet Engineering Task Force (IETF) M. Nottingham
Request for Comments: 9205 June 2022
Obsoletes: 3205
BCP: 56
Category: Best Current Practice
ISSN: 2070-1721

Building Protocols with HTTP
draft-ietf-httpbis-bcp56bis-15

Abstract

Applications often use HTTP as a substrate to create HTTP-based APIs. This document specifies best practices
for writing specifications that use HTTP to define new application protocols. It is written primarily to guide
IETF efforts to define application protocols using HTTP for deployment on the Internet but might be applicable
in other situations.

This document obsoletes RFC 3205.

Status of This Memo

This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of
the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 78411.

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at https://www.rfc-editor.org/info/rfc92052.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info3) in effect on the date of publication of this document. Please review
these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Revised BSD License text as described in Section 4.e
of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

ERROR: User-supplied boilerplate differs from auto-generated boilerplate (inserting auto-generated); Strings differ
at position 362, 1st string ends in: [[[ection 2 of RFC 7841.Information about the current status of this document,
any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9205.Copyright
NoticeCopyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.This
document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.i

1 https://www.rfc-editor.org/rfc/rfc7841.html#section-2
2 https://www.rfc-editor.org/info/rfc9205
3 https://trustee.ietf.org/license-info

#rfc.authors.1
#RFC3205
https://www.rfc-editor.org/info/bcp56
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/info/rfc9205
https://trustee.ietf.org/license-info

RFC 9205 Building Protocols with HTTP June 2022

etf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully,
as they describe your rights and restrictions with respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.]]], 2nd string ends in: [[[ection 2 of RFC 78
4111 https://www.rfc-editor.org/rfc/rfc7841.html#section-2.Information about the current status of this document,
any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc920522 https://
www.rfc-editor.org/info/rfc9205.Copyright NoticeCopyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.This document is subject to BCP 78 and the IETF Trust's Legal Provisions
Relating to IETF Documents (https://trustee.ietf.org/license-info33 https://trustee.ietf.org/license-info) in effect on
the date of publication of this document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document must include Revised
BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Revised BSD License.]]] (at line 6)

Nottingham Expires December 2022 [Page 2]

RFC 9205 Building Protocols with HTTP June 2022

Table of Contents

1 Introduction...5

1.1 Notational Conventions... 5

2 Is HTTP Being Used?.. 6

2.1 Non-HTTP Protocols... 6

3 What's Important About HTTP... 7

3.1 Generic Semantics... 7

3.2 Links...7

3.3 Rich Functionality... 7

4 Best Practices for Specifying the Use of HTTP.. 9

4.1 Specifying the Use of HTTP...9

4.2 Specifying Server Behaviour...9

4.3 Specifying Client Behaviour... 10

4.4 Specifying URLs... 10
 4.4.1 Discovering an Application's URLs...10
 4.4.2 Considering URI Schemes... 11
 4.4.3 Choosing Transport Ports...11

4.5 Using HTTP Methods... 12
 4.5.1 GET...12
 4.5.2 OPTIONS..12

4.6 Using HTTP Status Codes.. 13
 4.6.1 Redirection.. 14

4.7 Specifying HTTP Header Fields... 14

4.8 Defining Message Content.. 15

4.9 Leveraging HTTP Caching... 15
 4.9.1 Freshness...15
 4.9.2 Stale Responses.. 16
 4.9.3 Caching and Application Semantics.. 16
 4.9.4 Varying Content Based Upon the Request.. 16

4.10 Handling Application State... 17

4.11 Making Multiple Requests.. 17

4.12 Client Authentication...17

4.13 Coexisting with Web Browsing.. 18

4.14 Maintaining Application Boundaries.. 18

4.15 Using Server Push... 19

4.16 Allowing Versioning and Evolution... 19

5 IANA Considerations... 20

6 Security Considerations... 21

6.1 Privacy Considerations.. 21

Nottingham Expires December 2022 [Page 3]

RFC 9205 Building Protocols with HTTP June 2022

7 References.. 22

7.1 Normative References... 22

7.2 Informative References..22

Appendix A Changes from RFC 3205...25

Author's Address.. 26

Nottingham Expires December 2022 [Page 4]

RFC 9205 Building Protocols with HTTP June 2022

1. Introduction

Applications other than Web browsing often use HTTP [HTTP] as a substrate, a practice sometimes referred
to as creating "HTTP-based APIs", "REST APIs", or just "HTTP APIs". This is done for a variety of reasons,
including:

• familiarity by implementers, specifiers, administrators, developers, and users;

• availability of a variety of client, server, and proxy implementations;

• ease of use;

• availability of Web browsers;

• reuse of existing mechanisms like authentication and encryption;

• presence of HTTP servers and clients in target deployments; and

• its ability to traverse firewalls.

These protocols are often ad hoc, intended for only deployment by one or a few servers and consumption by a
limited set of clients. As a result, a body of practices and tools has arisen around defining HTTP-based APIs
that favour these conditions.

However, when such an application has multiple, separate implementations, is deployed on multiple
uncoordinated servers, and is consumed by diverse clients (as is often the case for HTTP APIs defined by
standards efforts), tools and practices intended for limited deployment can become unsuitable.

This mismatch is largely because the API's clients and servers will implement and evolve at different paces,
leading to a need for deployments with different features and versions to coexist. As a result, the designers
of HTTP-based APIs intended for such deployments need to more carefully consider how extensibility of the
service will be handled and how different deployment requirements will be accommodated.

More generally, an application protocol using HTTP faces a number of design decisions, including:

• Should it define a new URI scheme? Use new ports?

• Should it use standard HTTP methods and status codes or define new ones?

• How can the maximum value be extracted from the use of HTTP?

• How does it coexist with other uses of HTTP -- especially Web browsing?

• How can interoperability problems and "protocol dead ends" be avoided?

Section 2 defines when this document applies, Section 3 surveys the properties of HTTP that are important to
preserve, and Section 4 contains best practices for the specification of applications that use HTTP.

It is written primarily to guide IETF efforts to define application protocols using HTTP for deployment on the
Internet but might be applicable in other situations. Note that the requirements herein do not necessarily apply
to the development of generic HTTP extensions.

This document obsoletes [RFC3205] to reflect the experience and developments regarding HTTP in the
intervening time.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here.

Nottingham Expires December 2022 [Page 5]

RFC 9205 Building Protocols with HTTP June 2022

2. Is HTTP Being Used?

Different applications have different goals when using HTTP. The recommendations in this document apply
when a specification defines an application that:

• uses the transport port 80 or 443, or

• uses the URI scheme "http" or "https", or

• uses an ALPN protocol ID [RFC7301] that generically identifies HTTP (e.g., "http/1.1", "h2", "h3"), or

• makes registrations in or overall modifications to the IANA registries defined for HTTP.

Additionally, when a specification is using HTTP, all of the requirements of the HTTP protocol suite are in
force ([HTTP] in particular but also other specifications such as the specific version of HTTP in use and any
extensions in use).

Note that this document is intended to apply to applications, not generic extensions to HTTP. Furthermore,
while it is intended for IETF-specified applications, other standards organisations are encouraged to adhere to
its requirements.

2.1. Non-HTTP Protocols

An application can rely upon HTTP without meeting the criteria for using it as defined above. For example, an
application might wish to avoid re-specifying parts of the message format but might change other aspects of the
protocol's operation, or it might want to use application-specific methods.

Doing so permits more freedom to modify protocol operations, but at least a portion of the benefits outlined in
Section 3 are lost as most HTTP implementations won't be easily adaptable to these changes. The benefit of
mindshare will also be lost.

Such specifications MUST NOT use HTTP's URI schemes, transport ports, ALPN protocol IDs, or IANA
registries; rather, they are encouraged to establish their own.

Nottingham Expires December 2022 [Page 6]

RFC 9205 Building Protocols with HTTP June 2022

3. What's Important About HTTP

This section examines the characteristics of HTTP that are important to consider when using HTTP to define an
application protocol.

3.1. Generic Semantics

Much of the value of HTTP is in its generic semantics -- that is, the protocol elements defined by HTTP
are potentially applicable to every resource and are not specific to a particular context. Application-specific
semantics are best expressed in message content and header fields, not status codes or methods (although status
codes and methods do have generic semantics that relate to application state).

This split between generic and application-specific semantics allows an HTTP message to be handled by
common software (e.g., HTTP servers, intermediaries, client implementations, and caches) without requiring
those implementations to understand the application in use. It also allows people to leverage their knowledge of
HTTP semantics without needing specialised knowledge of a particular application.

Therefore, applications that use HTTP MUST NOT redefine, refine, or overlay the semantics of generic
protocol elements such as methods, status codes, or existing header fields. Instead, they should focus their
specifications on protocol elements that are specific to that application -- namely, their HTTP resources.

When writing a specification, it's often tempting to specify exactly how HTTP is to be implemented, supported,
and used. However, this can easily lead to an unintended profile of HTTP behaviour. For example, it's common
to see specifications with language like this:

A POST request MUST result in a 201 (Created) response.

This forms an expectation in the client that the response will always be 201 (Created) when in fact there are a
number of reasons why the status code might differ in a real deployment; for example, there might be a proxy
that requires authentication, or a server-side error, or a redirection. If the client does not anticipate this, the
application's deployment is brittle.

See Section 4.2 for more details.

3.2. Links

Another common practice is assuming that the HTTP server's namespace (or a portion thereof) is exclusively
for the use of a single application. This effectively overlays special, application-specific semantics onto that
space and precludes other applications from using it.

As explained in [BCP190], such "squatting" on a part of the URL space by a standard usurps the server's
authority over its own resources, can cause deployment issues, and is therefore bad practice in standards.

Instead of statically defining URI components like paths, it is RECOMMENDED that applications using HTTP
define and use links [WEB-LINKING] to allow flexibility in deployment.

Using runtime links in this fashion has a number of other benefits -- especially when an application is to have
multiple implementations and/or deployments (as is often the case for those that are standardised).

For example, navigating with a link allows a request to be routed to a different server without the overhead of a
redirection, thereby supporting deployment across machines well.

By using links, it also becomes possible to "mix and match" different applications on the same server. The use
of links also offers a natural mechanism for extensibility, versioning, and capability management because the
document containing the links can also contain information about their targets.

Using links also offers a form of cache invalidation that's seen on the Web; when a resource's state changes, the
application can change the affected links so that a fresh copy is always fetched.

See Section 4.4 for more details.

Nottingham Expires December 2022 [Page 7]

RFC 9205 Building Protocols with HTTP June 2022

3.3. Rich Functionality

HTTP offers a number of features to applications, such as:

• Message framing

• Multiplexing (in HTTP/2 [HTTP/2] and HTTP/3 [HTTP/3])

• Integration with TLS

• Support for intermediaries (proxies, gateways, content delivery networks (CDNs))

• Client authentication

• Content negotiation for format, language, and other features

• Caching for server scalability, latency and bandwidth reduction, and reliability

• Granularity of access control (through use of a rich space of URLs)

• Partial content to selectively request part of a response

• The ability to interact with the application easily using a Web browser

An application that uses HTTP is encouraged to utilise the various features that the protocol offers so that its
users receive the maximum benefit from those features and so that the application can be deployed in a variety
of situations. This document does not require specific features to be used since the appropriate design trade-offs
are highly specific to a given situation. However, following the practices in Section 4 is a good starting point.

Nottingham Expires December 2022 [Page 8]

RFC 9205 Building Protocols with HTTP June 2022

4. Best Practices for Specifying the Use of HTTP

This section contains best practices for specifying the use of HTTP by applications, including practices for
specific HTTP protocol elements.

4.1. Specifying the Use of HTTP

Specifications should use [HTTP] as the primary reference for HTTP; it is not necessary to reference all of the
specifications in the HTTP suite unless there are specific reasons to do so (e.g., a particular feature is called
out).

Because HTTP is a hop-by-hop protocol, a connection can be handled by implementations that are not
controlled by the application; for example, proxies, CDNs, firewalls, and so on. Requiring a particular
version of HTTP makes it difficult to use in these situations and harms interoperability. Therefore, it is NOT
RECOMMENDED that applications using HTTP specify a minimum version of HTTP to be used.

However, if an application's deployment benefits from the use of a particular version of HTTP (for example,
HTTP/2's multiplexing), this ought be noted.

Applications using HTTP MUST NOT specify a maximum version, to preserve the protocol's ability to evolve.

When specifying examples of protocol interactions, applications should document both the request and
response messages with complete header sections, preferably in HTTP/1.1 format [HTTP/1.1]. For example:

GET /thing HTTP/1.1
Host: example.com
Accept: application/things+json
User-Agent: Foo/1.0

HTTP/1.1 200 OK
Content-Type: application/things+json
Content-Length: 500
Server: Bar/2.2

[content here]

4.2. Specifying Server Behaviour

The server-side behaviours of an application are most effectively specified by defining the following protocol
elements:

• Media types [RFC6838], often based upon a format convention such as JSON [JSON];

• HTTP header fields, per Section 4.7; and

• The behaviour of resources, as identified by link relations [WEB-LINKING].

An application can define its operation by composing these protocol elements to define a set of resources that
are identified by link relations and that implement specified behaviours, including:

• retrieval of resource state using GET in one or more formats identified by media type;

• resource creation or update using POST or PUT, with an appropriately identified request content format;

• data processing using POST and identified request and response content format(s); and

• Resource deletion using DELETE.

For example, an application might specify:

Nottingham Expires December 2022 [Page 9]

RFC 9205 Building Protocols with HTTP June 2022

Resources linked to with the "example-widget" link relation type are Widgets. The state of a Widget can
be fetched in the "application/example-widget+json" format, and can be updated by PUT to the same link.
Widget resources can be deleted.

The Example-Count response header field on Widget representations indicates how many Widgets are
held by the sender.

The "application/example-widget+json" format is a JSON [RFC8259] format representing the state of a
Widget. It contains links to related information in the link indicated by the Link header field value with the
"example-other-info" link relation type.

Applications can also specify the use of URI Templates [URI-TEMPLATE] to allow clients to generate URLs
based upon runtime data.

4.3. Specifying Client Behaviour

An application's expectations for client behaviour ought to be closely aligned with those of Web browsers to
avoid interoperability issues when they are used.

One way to do this is to define it in terms of [FETCH] since that is the abstraction that browsers use for HTTP.

Some client behaviours (e.g., automatic redirect handling) and extensions (e.g., cookies) are not required by
HTTP but nevertheless have become very common. If their use is not explicitly specified by applications using
HTTP, there may be confusion and interoperability problems. In particular:

Redirect
handling:

Applications need to specify how redirects are expected to be handled; see Section 4.6.1.

Cookies:Applications using HTTP should explicitly reference the Cookie specification [COOKIES] if they are
required.

Certificates:Applications using HTTP should specify that TLS certificates are to be checked according to Section 4.3.4
of [HTTP] when HTTPS is used.

Applications using HTTP should not require that clients statically support HTTP features that are usually
negotiated. For example, requiring that clients support responses with a certain content coding ([HTTP],
Section 8.4.1) instead of negotiating for it ([HTTP], Section 12.5.3) means that otherwise conformant clients
cannot interoperate with the application. Applications can encourage the implementation of such features,
though.

4.4. Specifying URLs

In HTTP, the resources that clients interact with are identified with URLs [URL]. As [BCP190] explains, parts
of the URL are designed to be under the control of the owner (also known as the "authority") of that server to
give them the flexibility in deployment.

This means that in most cases, specifications for applications that use HTTP won't contain fixed application
URLs or paths; while it is common practice for a specification of a single-deployment API to specify the path
prefix "/app/v1" (for example), doing so in an IETF specification is inappropriate.

Therefore, the specification writer needs some mechanism to allow clients to discover an application's URLs.
Additionally, they need to specify which URL scheme(s) the application should be used with and whether to
use a dedicated port or to reuse HTTP's port(s).

4.4.1. Discovering an Application's URLs

Generally, a client will begin interacting with a given application server by requesting an initial document that
contains information about that particular deployment, potentially including links to other relevant resources.
Doing so ensures that the deployment is as flexible as possible (potentially spanning multiple servers), allows
evolution, and also gives the application the opportunity to tailor the "discovery document" to the client.

There are a few common patterns for discovering that initial URL.

Nottingham Expires December 2022 [Page 10]

https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-8.4.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.3

RFC 9205 Building Protocols with HTTP June 2022

The most straightforward mechanism for URL discovery is to configure the client with (or otherwise convey to
it) a full URL. This might be done in a configuration document or through another discovery mechanism.

However, if the client only knows the server's hostname and the identity of the application, there needs to be
some way to derive the initial URL from that information.

An application cannot define a fixed prefix for its URL paths; see [BCP190]. Instead, a specification for such
an application can use one of the following strategies:

• Register a well-known URI [WELL-KNOWN-URI] as an entry point for that application. This provides a
fixed path on every potential server that will not collide with other applications.

• Enable the server authority to convey a URI Template [URI-TEMPLATE] or similar mechanism for
generating a URL for an entry point. For example, this might be done in a configuration document or other
artefact.

Once the discovery document is located, it can be fetched, cached for later reuse (if allowed by its metadata),
and used to locate other resources that are relevant to the application using full URIs or URL Templates.

In some cases, an application may not wish to use such a discovery document -- for example, when
communication is very brief or when the latency concerns of doing so preclude the use of a discovery
document. These situations can be addressed by placing all of the application's resources under a well-known
location.

4.4.2. Considering URI Schemes

Applications that use HTTP will typically employ the "http" and/or "https" URI schemes. "https" is
RECOMMENDED to provide authentication, integrity, and confidentiality, as well as to mitigate pervasive
monitoring attacks [RFC7258].

However, application-specific schemes can also be defined. When defining a URI scheme for an application
using HTTP, there are a number of trade-offs and caveats to keep in mind:

• Unmodified Web browsers will not support the new scheme. While it is possible to register new URI
schemes with Web browsers (e.g., registerProtocolHandler() in [HTML], as well as several proprietary
approaches), support for these mechanisms is not shared by all browsers, and their capabilities vary.

• Existing non-browser clients, intermediaries, servers, and associated software will not recognise the new
scheme. For example, a client library might fail to dispatch the request, a cache might refuse to store the
response, and a proxy might fail to forward the request.

• Because URLs commonly occur in HTTP artefacts and are often generated automatically (e.g., in the
Location response header field), it can be difficult to ensure that the new scheme is used consistently.

• The resources identified by the new scheme will still be available using "http" and/or "https" URLs. Those
URLs can "leak" into use, which can present security and operability issues. For example, using a new
scheme to ensure that requests don't get sent to a "normal" Web site is likely to fail.

• Features that rely upon the URL's origin [RFC6454], such as the Web's same-origin policy, will be
impacted by a change of scheme.

• HTTP-specific features such as cookies [COOKIES], authentication [HTTP], caching [HTTP-CACHING],
HTTP Strict Transport Security (HSTS) [RFC6797], and Cross-Origin Resource Sharing (CORS) [FETCH]
might or might not work correctly, depending on how they are defined and implemented. Generally, they
are designed and implemented with an assumption that the URL will always be "http" or "https".

• Web features that require a secure context [SECCTXT] will likely treat a new scheme as insecure.

See [RFC7595] for more information about minting new URI schemes.

4.4.3. Choosing Transport Ports

Applications can use the applicable default port (80 for HTTP, 443 for HTTPS), or they can be deployed
upon other ports. This decision can be made at deployment time or might be encouraged by the application's
specification (e.g., by registering a port for that application).

Nottingham Expires December 2022 [Page 11]

RFC 9205 Building Protocols with HTTP June 2022

If a non-default port is used, it needs to be reflected in the authority of all URLs for that resource; the only
mechanism for changing a default port is changing the URI scheme (see Section 4.4.2).

Using a port other than the default has privacy implications (i.e., the protocol can now be distinguished from
other traffic), as well as operability concerns (as some networks might block or otherwise interfere with it).
Privacy implications (including those stemming from this distinguishability) should be documented in Security
Considerations.

See [RFC7605] for further guidance.

4.5. Using HTTP Methods

Applications that use HTTP MUST confine themselves to using registered HTTP methods such as GET, POST,
PUT, DELETE, and PATCH.

New HTTP methods are rare; they are required to be registered in the "HTTP Method Registry" with IETF
Review (see [HTTP]) and are also required to be generic. That means that they need to be potentially applicable
to all resources, not just those of one application.

While historically some applications (e.g., [RFC4791]) have defined application-specific methods, [HTTP]
now forbids this.

When authors believe that a new method is required, they are encouraged to engage with the HTTP community
early (e.g., on the <mailto:ietf-http-wg@w3.org> mailing list) and document their proposal as a separate HTTP
extension rather than as part of an application's specification.

4.5.1. GET

GET is the most common and useful HTTP method; its retrieval semantics allow caching and side-effect free
linking and underlie many of the benefits of using HTTP.

Queries can be performed with GET, often using the query component of the URL; this is a familiar pattern
from Web browsing, and the results can be cached, improving the efficiency of an often expensive process. In
some cases, however, GET might be unwieldy for expressing queries because of the limited syntax of the URI;
in particular, if binary data forms part of the query terms, it needs to be encoded to conform to the URI syntax.

While this is not an issue for short queries, it can become one for larger query terms or those that need to
sustain a high rate of requests. Additionally, some HTTP implementations limit the size of URLs they support,
although modern HTTP software has much more generous limits than previously (typically, considerably more
than 8000 octets, as required by [HTTP]).

In these cases, an application using HTTP might consider using POST to express queries in the request's
content; doing so avoids encoding overhead and URL length limits in implementations. However, in doing
so, it should be noted that the benefits of GET such as caching and linking to query results are lost. Therefore,
applications using HTTP that require support for POST queries ought to consider allowing both methods.

Processing of GET requests should not change the application's state or have other side effects that might be
significant to the client since implementations can and do retry HTTP GET requests that fail. Furthermore,
some GET requests protected by TLS early data might be vulnerable to replay attacks (see [RFC8470]). Note
that this does not include logging and similar functions; see [HTTP], Section 9.2.1.

Finally, note that while the generic HTTP syntax allows a GET request message to contain content, the purpose
is to allow message parsers to be generic; per [HTTP], Section 9.3.1, content in a GET is not recommended,
has no meaning, and will be either ignored or rejected by generic HTTP software (such as intermediaries,
caches, servers, and client libraries).

4.5.2. OPTIONS

The OPTIONS method was defined for metadata retrieval and is used both by Web Distributed Authoring and
Versioning (WebDAV) [RFC4918] and CORS [FETCH]. Because HTTP-based APIs often need to retrieve
metadata about resources, it is often considered for their use.

Nottingham Expires December 2022 [Page 12]

mailto:ietf-http-wg@w3.org
https://www.rfc-editor.org/rfc/rfc9110.html#section-9.2.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-9.3.1

RFC 9205 Building Protocols with HTTP June 2022

However, OPTIONS does have significant limitations:

• It isn't possible to link to the metadata with a simple URL because OPTIONS is not the default method.

• OPTIONS responses are not cacheable because HTTP caches operate on representations of the resource
(i.e., GET and HEAD). If OPTIONS responses are cached separately, their interactions with the HTTP
cache expiry, secondary keys, and other mechanisms need to be considered.

• OPTIONS is "chatty" -- requesting metadata separately increases the number of requests needed to interact
with the application.

• Implementation support for OPTIONS is not universal; some servers do not expose the ability to respond to
OPTIONS requests without significant effort.

Instead of OPTIONS, one of these alternative approaches might be more appropriate:

• For server-wide metadata, create a well-known URI [WELL-KNOWN-URI] or use an already existing one
if appropriate (e.g., host-meta [RFC6415]).

• For metadata about a specific resource, create a separate resource and link to it using a Link response
header field or a link serialised into the response's content. See [WEB-LINKING]. Note that the Link
header field is available on HEAD responses, which is useful if the client wants to discover a resource's
capabilities before they interact with it.

4.6. Using HTTP Status Codes

HTTP status codes convey semantics both for the benefit of generic HTTP components -- such as caches,
intermediaries, and clients -- and applications themselves. However, applications can encounter a number of
pitfalls in their use.

First, status codes are often generated by components other than the application itself. This can happen, for
example, when network errors are encountered; when a captive portal, proxy, or content delivery network is
present; or when a server is overloaded or thinks it is under attack. They can even be generated by generic
client software when certain error conditions are encountered. As a result, if an application assigns specific
semantics to one of these status codes, a client can be misled about its state because the status code was
generated by a generic component, not the application itself.

Furthermore, mapping application errors to individual HTTP status codes one-to-one often leads to a situation
where the finite space of applicable HTTP status codes is exhausted. This, in turn, leads to a number of bad
practices -- including minting new, application-specific status codes or using existing status codes even though
the link between their semantics and the application's is tenuous at best.

Instead, applications using HTTP should define their errors to use the most applicable status code, making
generous use of the general status codes (200, 400, and 500) when in doubt. Importantly, they should not
specify a one-to-one relationship between status codes and application errors, thereby avoiding the exhaustion
issue outlined above.

To distinguish between multiple error conditions that are mapped to the same status code and to avoid the
misattribution issue outlined above, applications using HTTP should convey finer-grained error information in
the response's message content and/or header fields. [PROBLEM-DETAILS] provides one way to do so.

Because the set of registered HTTP status codes can expand, applications using HTTP should explicitly point
out that clients ought to be able to handle all applicable status codes gracefully (i.e., falling back to the generic
n00 semantics of a given status code; e.g., 499 can be safely handled as 400 (Bad Request) by clients that don't
recognise it). This is preferable to creating a "laundry list" of potential status codes since such a list won't be
complete in the foreseeable future.

Applications using HTTP MUST NOT re-specify the semantics of HTTP status codes, even if it is only by
copying their definition. It is NOT RECOMMENDED they require specific reason phrases to be used; the
reason phrase has no function in HTTP, is not guaranteed to be preserved by implementations, and is not
carried at all in the HTTP/2 [HTTP/2] message format.

Nottingham Expires December 2022 [Page 13]

RFC 9205 Building Protocols with HTTP June 2022

Applications MUST only use registered HTTP status codes. As with methods, new HTTP status codes are rare
and required (by [HTTP]) to be registered with IETF Review. Similarly, HTTP status codes are generic; they
are required (by [HTTP]) to be potentially applicable to all resources, not just to those of one application.

When authors believe that a new status code is required, they are encouraged to engage with the HTTP
community early (e.g., on the <mailto:ietf-http-wg@w3.org> mailing list) and document their proposal as a
separate HTTP extension, rather than as part of an application's specification.

4.6.1. Redirection

The 3xx series of status codes specified in Section 15.4 of [HTTP] directs the user agent to another resource
to satisfy the request. The most common of these are 301, 302, 307, and 308, all of which use the Location
response header field to indicate where the client should resend the request.

There are two ways that the members of this group of status codes differ:

• Whether they are permanent or temporary. Permanent redirects can be used to update links stored in the
client (e.g., bookmarks), whereas temporary ones cannot. Note that this has no effect on HTTP caching; it is
completely separate.

• Whether they allow the redirected request to change the request method from POST to GET. Web
browsers generally do change POST to GET for 301 and 302; therefore, 308 and 307 were created to allow
redirection without changing the method.

This table summarises their relationships:

Permanent Temporary
Allows change of the request
method from POST to GET

301 302

Does not allow change of the
request method

308 307

Table 1

The 303 (See Other) status code can be used to inform the client that the result of an operation is available at a
different location using GET.

As noted in [HTTP], a user agent is allowed to automatically follow a 3xx redirect that has a Location response
header field, even if they don't understand the semantics of the specific status code. However, they aren't
required to do so; therefore, if an application using HTTP desires redirects to be automatically followed, it
needs to explicitly specify the circumstances when this is required.

Redirects can be cached (when appropriate cache directives are present), but beyond that, they are not "sticky"
-- i.e., redirection of a URI will not result in the client assuming that similar URIs (e.g., with different query
parameters) will also be redirected.

Applications using HTTP are encouraged to specify that 301 and 302 responses change the subsequent
request method from POST (but no other method) to GET to be compatible with browsers. Generally, when
a redirected request is made, its header fields are copied from the original request. However, they can be
modified by various mechanisms; e.g., sent Authorization ([HTTP], Section 11) and Cookie ([COOKIES])
header fields will change if the origin (and sometimes path) of the request changes. An application using HTTP
should specify if any request header fields that it defines need to be modified or removed upon a redirect;
however, this behaviour cannot be relied upon since a generic client (like a browser) will be unaware of such
requirements.

4.7. Specifying HTTP Header Fields

Applications often define new HTTP header fields. Typically, using HTTP header fields is appropriate in a few
different situations:

• The field is useful to intermediaries (who often wish to avoid parsing message content), and/or

Nottingham Expires December 2022 [Page 14]

mailto:ietf-http-wg@w3.org
https://www.rfc-editor.org/rfc/rfc9110.html#section-15.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-11

RFC 9205 Building Protocols with HTTP June 2022

• The field is useful to generic HTTP software (e.g., clients, servers), and/or

• It is not possible to include their values in the message content (usually because a format does not allow it).

When the conditions above are not met, it is usually better to convey application-specific information in other
places -- e.g., the message content or the URL query string.

New header fields MUST be registered, per Section 16.3 of [HTTP].

See Section 16.3.2 of [HTTP] for guidelines to consider when minting new header fields. [STRUCTURED-
FIELDS] provides a common structure for new header fields and avoids many issues in their parsing and
handling; it is RECOMMENDED that new header fields use it.

It is RECOMMENDED that header field names be short (even when field compression is used, there is an
overhead) but appropriately specific. In particular, if a header field is specific to an application, an identifier for
that application can form a prefix to the header field name, separated by a hyphen.

For example, if the "example" application needs to create three header fields, they might be called "example-
foo", "example-bar", and "example-baz". Note that the primary motivation here is to avoid consuming more
generic field names, not to reserve a portion of the namespace for the application; see [RFC6648] for related
considerations.

The semantics of existing HTTP header fields MUST NOT be redefined without updating their registration or
defining an extension to them (if allowed). For example, an application using HTTP cannot specify that the
Location header field has a special meaning in a certain context.

See Section 4.9 for the interaction between header fields and HTTP caching; in particular, request header fields
that are used to choose (per Section 4.1 of [HTTP-CACHING]) a response have impact there and need to be
carefully considered.

See Section 4.10 for considerations regarding header fields that carry application state (e.g., Cookie).

4.8. Defining Message Content

Common syntactic conventions for message contents include JSON [JSON], XML [XML], and Concise Binary
Object Representation (CBOR) [RFC8949]. Best practices for their use are out of scope for this document.

Applications should register distinct media types for each format they define; this makes it possible to identify
them unambiguously and negotiate for their use. See [RFC6838] for more information.

4.9. Leveraging HTTP Caching

HTTP caching [HTTP-CACHING] is one of the primary benefits of using HTTP for applications; it provides
scalability, reduces latency, and improves reliability. Furthermore, HTTP caches are readily available in
browsers and other clients, networks as forward and reverse proxies, content delivery networks, and as part of
server software.

Even when an application using HTTP isn't designed to take advantage of caching, it needs to consider how
caches will handle its responses to preserve correct behaviour when one is interposed (whether in the network,
server, client, or intervening infrastructure).

4.9.1. Freshness

Assigning even a short freshness lifetime ([HTTP-CACHING], Section 4.2) -- e.g., 5 seconds -- allows a
response to be reused to satisfy multiple clients and/or a single client making the same request repeatedly. In
general, if it is safe to reuse something, consider assigning a freshness lifetime.

The most common method for specifying freshness is the max-age response directive ([HTTP-CACHING],
Section 5.2.2.1). The Expires header field ([HTTP-CACHING], Section 5.3) can also be used, but it is not
necessary; all modern cache implementations support the Cache-Control header field, and specifying freshness
as a delta is usually more convenient and less error-prone.

Nottingham Expires December 2022 [Page 15]

https://www.rfc-editor.org/rfc/rfc9110.html#section-16.3
https://www.rfc-editor.org/rfc/rfc9110.html#section-16.3.2
https://www.rfc-editor.org/rfc/rfc9111.html#section-4.1
https://www.rfc-editor.org/rfc/rfc9111.html#section-4.2
https://www.rfc-editor.org/rfc/rfc9111.html#section-5.2.2.1
https://www.rfc-editor.org/rfc/rfc9111.html#section-5.3

RFC 9205 Building Protocols with HTTP June 2022

It is not necessary to add the public response directive ([HTTP-CACHING], Section 5.2.2.9) to cache most
responses; it is only necessary when it's desirable to store an authenticated response, or when the status code
isn't understood by the cache and there isn't explicit freshness information available.

In some situations, responses without explicit cache freshness directives will be stored and served using a
heuristic freshness lifetime; see [HTTP-CACHING], Section 4.2.2. As the heuristic is not under the control of
the application, it is generally preferable to set an explicit freshness lifetime or make the response explicitly
uncacheable.

If caching of a response is not desired, the appropriate cache response directive is no-store. Other directives are
not necessary, and no-store only needs to be sent in situations where the response might be cached; see [HTTP-
CACHING], Section 3. Note that the no-cache directive allows a response to be stored, just not reused by a
cache without validation; it does not prevent caching (despite its name).

For example, this response cannot be stored or reused by a cache:

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: no-store

[content]

4.9.2. Stale Responses

Authors should understand that stale responses (e.g., with Cache-Control: max-age=0) can be reused by caches
when disconnected from the origin server; this can be useful for handling network issues.

If doing so is not suitable for a given response, the origin should send the must-revalidate cache directive. See
Section 4.2.4 of [HTTP-CACHING] and also [RFC5861] for additional controls over stale content.

Stale responses can be refreshed by assigning a validator, saving both transfer bandwidth and latency for large
responses; see Section 13 of [HTTP].

4.9.3. Caching and Application Semantics

When an application has a need to express a lifetime that's separate from the freshness lifetime, this should
be conveyed separately, either in the response's content or in a separate header field. When this happens, the
relationship between HTTP caching and that lifetime needs to be carefully considered since the response will
be used as long as it is considered fresh.

In particular, application authors need to consider how responses that are not freshly obtained from the
origin server should be handled; if they have a concept like a validity period, this will need to be calculated
considering the age of the response (see [HTTP-CACHING], Section 4.2.3).

One way to address this is to explicitly specify that responses need to be fresh upon use.

4.9.4. Varying Content Based Upon the Request

If an application uses a request header field to change the response's header fields or content, authors should
point out that this has implications for caching; in general, such resources need to either make their responses
uncacheable (e.g., with the no-store cache directive defined in [HTTP-CACHING], Section 5.2.2.5) or send
the Vary response header field ([HTTP], Section 12.5.5) on all responses from that resource (including the
"default" response).

For example, this response:

Nottingham Expires December 2022 [Page 16]

https://www.rfc-editor.org/rfc/rfc9111.html#section-5.2.2.9
https://www.rfc-editor.org/rfc/rfc9111.html#section-4.2.2
https://www.rfc-editor.org/rfc/rfc9111.html#section-3
https://www.rfc-editor.org/rfc/rfc9111.html#section-4.2.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-13
https://www.rfc-editor.org/rfc/rfc9111.html#section-4.2.3
https://www.rfc-editor.org/rfc/rfc9111.html#section-5.2.2.5
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.5

RFC 9205 Building Protocols with HTTP June 2022

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: max-age=60
ETag: "sa0f8wf20fs0f"
Vary: Accept-Encoding

[content]

can be stored for 60 seconds by both private and shared caches, can be revalidated with If-None-Match, and
varies on the Accept-Encoding request header field.

4.10. Handling Application State

Applications can use stateful cookies [COOKIES] to identify a client and/or store client-specific data to
contextualise requests.

When used, it is important to carefully specify the scoping and use of cookies; if the application exposes
sensitive data or capabilities (e.g., by acting as an ambient authority), exploits are possible. Mitigations include
using a request-specific token to ensure the intent of the client.

4.11. Making Multiple Requests

Clients often need to send multiple requests to perform a task.

In HTTP/1 [HTTP/1.1], parallel requests are most often supported by opening multiple connections.
Application performance can be impacted when too many simultaneous connections are used because
connections' congestion control will not be coordinated. Furthermore, it can be difficult for applications to
decide when to issue and which connection to use for a given request, further impacting performance.

HTTP/2 [HTTP/2] and HTTP/3 [HTTP/3] offer multiplexing to applications, removing the need to use multiple
connections. However, application performance can still be significantly affected by how the server chooses to
prioritize responses. Depending on the application, it might be best for the server to determine the priority of
responses or for the client to hint its priorities to the server (see, e.g., [HTTP-PRIORITY]).

In all versions of HTTP, requests are made independently -- you can't rely on the relative order of two requests
to guarantee their processing order. This is because they might be sent over a multiplexed protocol by an
intermediary or sent to different origin servers, or the server might even perform processing in a different order.
If two requests need strict ordering, the only reliable way to ensure the outcome is to issue the second request
when the final response to the first has begun.

Applications MUST NOT make assumptions about the relationship between separate requests on a single
transport connection; doing so breaks many of the assumptions of HTTP as a stateless protocol and will cause
problems in interoperability, security, operability, and evolution.

4.12. Client Authentication

Applications can use HTTP authentication (Section 11 of [HTTP]) to identify clients. Per [RFC7617], the Basic
authentication scheme is not suitable for protecting sensitive or valuable information unless the channel is
secure (e.g., using the "https" URI scheme). Likewise, [RFC7616] requires the Digest authentication scheme to
be used over a secure channel.

With HTTPS, clients might also be authenticated using certificates [RFC8446], but note that such
authentication is intrinsically scoped to the underlying transport connection. As a result, a client has no way of
knowing whether the authenticated status was used in preparing the response (though Vary: * and/or the private
cache directive can provide a partial indication), and the only way to obtain a specifically unauthenticated
response is to open a new connection.

Nottingham Expires December 2022 [Page 17]

https://www.rfc-editor.org/rfc/rfc9110.html#section-11

RFC 9205 Building Protocols with HTTP June 2022

When used, it is important to carefully specify the scoping and use of authentication; if the application exposes
sensitive data or capabilities (e.g., by acting as an ambient authority; see Section 8.3 of [RFC6454]), exploits
are possible. Mitigations include using a request-specific token to ensure the intent of the client.

4.13. Coexisting with Web Browsing

Even if there is not an intent for an application to be used with a Web browser, its resources will remain
available to browsers and other HTTP clients. This means that all such applications that use HTTP need to
consider how browsers will interact with them, particularly regarding security.

For example, if an application's state can be changed using a POST request, a Web browser can easily be
coaxed into cross-site request forgery (CSRF) from arbitrary Web sites.

Or, if an attacker gains control of content returned from the application's resources (for example, part of the
request is reflected in the response, or the response contains external information that the attacker can change),
they can inject code into the browser and access data and capabilities as if they were the origin -- a technique
known as a cross-site scripting (XSS) attack.

This is only a small sample of the kinds of issues that applications using HTTP must consider. Generally, the
best approach is to actually consider the application as a Web application, and to follow best practices for their
secure development.

A complete enumeration of such practices is out of scope for this document, but some considerations include:

• Using an application-specific media type in the Content-Type header field, and requiring clients to fail if it
is not used.

• Using X-Content-Type-Options: nosniff [FETCH] to ensure that content under attacker control can't be
coaxed into a form that is interpreted as active content by a Web browser.

• Using Content-Security-Policy [CSP] to constrain the capabilities of active content (i.e., that which can
execute scripts, such as HTML [HTML] and PDF), thereby mitigating XSS attacks.

• Using Referrer-Policy [REFERRER-POLICY] to prevent sensitive data in URLs from being leaked in the
Referer request header field.

• Using the 'HttpOnly' flag on Cookies to ensure that cookies are not exposed to browser scripting languages
[COOKIES].

• Avoiding use of compression on any sensitive information (e.g., authentication tokens, passwords), as the
scripting environment offered by Web browsers allows an attacker to repeatedly probe the compression
space; if the attacker has access to the network path of the communication, they can use this capability to
recover that information.

Depending on how they are intended to be deployed, specifications for applications using HTTP might require
the use of these mechanisms in specific ways or might merely point them out in Security Considerations.

An example of an HTTP response from an application that does not intend for its content to be treated as active
by browsers might look like this:

HTTP/1.1 200 OK
Content-Type: application/example+json
X-Content-Type-Options: nosniff
Content-Security-Policy: default-src 'none'
Cache-Control: max-age=3600
Referrer-Policy: no-referrer

[content]

If an application has browser compatibility as a goal, client interaction ought to be defined in terms of
[FETCH] since that is the abstraction that browsers use for HTTP; it enforces many of these best practices.

Nottingham Expires December 2022 [Page 18]

https://www.rfc-editor.org/rfc/rfc6454.html#section-8.3

RFC 9205 Building Protocols with HTTP June 2022

4.14. Maintaining Application Boundaries

Because many HTTP capabilities are scoped to the origin [RFC6454], applications also need to consider how
deployments might interact with other applications (including Web browsing) that use the same origin server.

For example, if cookies [COOKIES] are used to carry application state, they will be sent with all requests to the
origin by default (unless scoped by path), and the application might receive cookies from other applications on
the origin server. This can lead to security issues as well as collision in cookie names.

One solution to these issues is to require a dedicated hostname for the application so that it has a unique origin.
However, it is often desirable to allow multiple applications to be deployed on a single hostname; doing so
provides the most deployment flexibility and enables them to be "mixed" together (see [BCP190] for details).

Therefore, applications using HTTP should strive to allow multiple applications on an origin. Specifically,
when specifying the use of cookies, HTTP authentication realms [HTTP], or other origin-wide HTTP
mechanisms, applications using HTTP should not mandate the use of a particular name but instead let
deployments configure them. Consideration should be given to scoping them to part of the origin, using their
specified mechanisms for doing so.

Modern Web browsers constrain the ability of content from one origin to access resources from another to
avoid leaking private information. As a result, applications that wish to expose cross-origin data to browsers
will need to implement the CORS protocol; see [FETCH].

4.15. Using Server Push

HTTP/2 added the ability for servers to "push" request/response pairs to clients in [HTTP/2], Section 8.4.
While server push seems like a natural fit for many common application semantics (e.g., "fanout" and publish/
subscribe), a few caveats should be noted:

• Server push is hop by hop; that is, it is not automatically forwarded by intermediaries. As a result, it might
not work easily (or at all) with proxies, reverse proxies, and content delivery networks.

• Server push can have a negative performance impact on HTTP when used incorrectly, particularly if there
is contention with resources that have actually been requested by the client.

• Server push is implemented differently in different clients, especially regarding interaction with HTTP
caching, and capabilities might vary.

• APIs for server push are currently unavailable in some implementations and vary widely in others. In
particular, there is no current browser API for it.

• Server push is not supported in HTTP/1.1 or HTTP/1.0.

• Server push does not form part of the "core" semantics of HTTP and therefore might not be supported by
future versions of the protocol.

Applications wishing to optimise cases where the client can perform work related to requests before the full
response is available (e.g., fetching links for things likely to be contained within) might benefit from using the
103 (Early Hints) status code; see [RFC8297].

Applications using server push directly need to enforce the requirements regarding authority in [HTTP/2],
Section 8.4 to avoid cross-origin push attacks.

4.16. Allowing Versioning and Evolution

It's often necessary to introduce new features into application protocols and change existing ones.

In HTTP, backwards-incompatible changes can be made using mechanisms such as:

• Using a distinct link relation type [WEB-LINKING] to identify a URL for a resource that implements the
new functionality.

• Using a distinct media type [RFC6838] to identify formats that enable the new functionality.

• Using a distinct HTTP header field to implement new functionality outside the message content.

Nottingham Expires December 2022 [Page 19]

https://www.rfc-editor.org/rfc/rfc9113.html#section-8.4
https://www.rfc-editor.org/rfc/rfc9113.html#section-8.4

RFC 9205 Building Protocols with HTTP June 2022

5. IANA Considerations

This document has no IANA actions.

Nottingham Expires December 2022 [Page 20]

RFC 9205 Building Protocols with HTTP June 2022

6. Security Considerations

Applications using HTTP are subject to the security considerations of HTTP itself and any extensions used;
[HTTP], [HTTP-CACHING], and [WEB-LINKING] are often relevant, amongst others.

Section 4.4.2 recommends support for "https" URLs and discourages the use of "http" URLs to provide
authentication, integrity, and confidentiality, as well as to mitigate pervasive monitoring attacks. Many
applications using HTTP perform authentication and authorization with bearer tokens (e.g., in session cookies).
If the transport is unencrypted, an attacker that can eavesdrop upon or modify HTTP communications can often
escalate their privilege to perform operations on resources.

Section 4.9.3 highlights the potential for mismatch between HTTP caching and application-specific storage of
responses or information therein.

Section 4.10 discusses the impact of using stateful mechanisms in the protocol as ambient authority and
suggests a mitigation.

Section 4.13 highlights the implications of Web browsers' capabilities on applications that use HTTP.

Section 4.14 discusses the issues that arise when applications are deployed on the same origin as websites (and
other applications).

Section 4.15 highlights risks of using HTTP/2 server push in a manner other than that specified.

Applications that use HTTP in a manner that involves modification of implementations -- for example,
requiring support for a new URI scheme or a non-standard method -- risk having those implementations "fork"
from their parent HTTP implementations, with the possible result that they do not benefit from patches and
other security improvements incorporated upstream.

6.1. Privacy Considerations

HTTP clients can expose a variety of information to servers. Besides information that's explicitly sent as part of
an application's operation (for example, names and other user-entered data) and "on the wire" (which is one of
the reasons "https" is recommended in Section 4.4.2), other information can be gathered through less obvious
means -- often by connecting activities of a user over time.

This includes session information, tracking the client through fingerprinting, and code execution.

Session information includes things like the IP address of the client, TLS session tickets, Cookies, ETags
stored in the client's cache, and other stateful mechanisms. Applications are advised to avoid using session
mechanisms unless they are unavoidable or necessary for operation, in which case these risks need to be
documented. When they are used, implementations should be encouraged to allow clearing such state.

Fingerprinting uses unique aspects of a client's messages and behaviours to connect disparate requests
and connections. For example, the User-Agent request header field conveys specific information about
the implementation; the Accept-Language request header field conveys the users' preferred language. In
combination, a number of these markers can be used to uniquely identify a client, impacting its control over its
data. As a result, applications are advised to specify that clients should only emit the information they need to
function in requests.

Finally, if an application exposes the ability to execute code, great care needs to be taken since any ability
to observe its environment can be used as an opportunity to both fingerprint the client and to obtain and
manipulate private data (including session information). For example, access to high-resolution timers
(even indirectly) can be used to profile the underlying hardware, creating a unique identifier for the system.
Applications are advised to avoid allowing the use of mobile code where possible; when it cannot be avoided,
the resulting system's security properties need be carefully scrutinised.

Nottingham Expires December 2022 [Page 21]

RFC 9205 Building Protocols with HTTP June 2022

7. References

7.1. Normative References

[BCP190] Nottingham, M., "URI Design and Ownership", BCP 190, RFC 8820, DOI
10.17487/RFC8820, June 2020, <https://www.rfc-editor.org/rfc/rfc8820>.

[HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics",
STD 97, RFC 9110, DOI 10.17487/RFC9110, June 2022, <https://www.rfc-editor
.org/info/rfc9110>.

[HTTP-CACHING] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Caching",
STD 98, RFC 9111, DOI 10.17487/RFC9111, June 2022, <https://www.rfc-editor
.org/info/rfc9111>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP
14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org
/info/rfc2119>.

[RFC6454] Barth, A., "The Web Origin Concept", RFC 6454, DOI 10.17487/RFC6454,
December 2011, <https://www.rfc-editor.org/info/rfc6454>.

[RFC6648] Saint-Andre, P., Crocker, D., and M. Nottingham, "Deprecating the "X-" Prefix
and Similar Constructs in Application Protocols", BCP 178, RFC 6648, DOI
10.17487/RFC6648, June 2012, <https://www.rfc-editor.org/info/rfc6648>.

[RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and
Registration Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January
2013, <https://www.rfc-editor.org/info/rfc6838>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words",
BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor
.org/info/rfc8174>.

[STRUCTURED-FIELDS] Nottingham, M. and P-H. Kamp, "Structured Field Values for HTTP", RFC 8941,
DOI 10.17487/RFC8941, February 2021, <https://www.rfc-editor.org/info/rfc894
1>.

[URL] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January
2005, <https://www.rfc-editor.org/info/rfc3986>.

[WEB-LINKING] Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/RFC8288, October
2017, <https://www.rfc-editor.org/info/rfc8288>.

[WELL-KNOWN-URI] Nottingham, M., "Well-Known Uniform Resource Identifiers (URIs)", RFC 8615,
DOI 10.17487/RFC8615, May 2019, <https://www.rfc-editor.org/info/rfc8615>.

7.2. Informative References

[COOKIES] Barth, A., "HTTP State Management Mechanism", RFC 6265, DOI 10.17487/
RFC6265, April 2011, <https://www.rfc-editor.org/info/rfc6265>.

[CSP] West, M., "Content Security Policy Level 3", W3C Working Draft, June 2021,
<https://www.w3.org/TR/2021/WD-CSP3-20210629>.

[FETCH] WHATWG, "Fetch - Living Standard", <https://fetch.spec.whatwg.org>.

[HTML] WHATWG, "HTML - Living Standard", <https://html.spec.whatwg.org>.

[HTTP-PRIORITY] ##, #. and L. Pardue, "Extensible Prioritization Scheme for HTTP", RFC 9218,
DOI 10.17487/RFC9218, June 2022, <https://www.rfc-editor.org/info/rfc9218>.

Nottingham Expires December 2022 [Page 22]

https://www.rfc-editor.org/rfc/rfc8820
https://www.rfc-editor.org/info/bcp190
https://dx.doi.org/10.17487/RFC8820
https://dx.doi.org/10.17487/RFC8820
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/info/std97
https://dx.doi.org/10.17487/RFC9110
https://www.rfc-editor.org/rfc/rfc9111.html
https://www.rfc-editor.org/info/std98
https://dx.doi.org/10.17487/RFC9111
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc6454.html
https://dx.doi.org/10.17487/RFC6454
https://www.rfc-editor.org/rfc/rfc6648.html
https://www.rfc-editor.org/rfc/rfc6648.html
https://www.rfc-editor.org/info/bcp178
https://dx.doi.org/10.17487/RFC6648
https://dx.doi.org/10.17487/RFC6648
https://www.rfc-editor.org/rfc/rfc6838.html
https://www.rfc-editor.org/rfc/rfc6838.html
https://www.rfc-editor.org/info/bcp13
https://dx.doi.org/10.17487/RFC6838
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC8174
https://www.rfc-editor.org/rfc/rfc8941.html
https://dx.doi.org/10.17487/RFC8941
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/info/std66
https://dx.doi.org/10.17487/RFC3986
https://www.rfc-editor.org/rfc/rfc8288.html
https://dx.doi.org/10.17487/RFC8288
https://www.rfc-editor.org/rfc/rfc8615.html
https://dx.doi.org/10.17487/RFC8615
https://www.rfc-editor.org/rfc/rfc6265.html
https://dx.doi.org/10.17487/RFC6265
https://dx.doi.org/10.17487/RFC6265
https://www.w3.org/TR/2021/WD-CSP3-20210629
https://fetch.spec.whatwg.org
https://html.spec.whatwg.org
https://www.rfc-editor.org/rfc/rfc9218.html
https://dx.doi.org/10.17487/RFC9218

RFC 9205 Building Protocols with HTTP June 2022

[HTTP/1.1] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP/1.1", STD 99,
RFC 9112, DOI 10.17487/RFC9112, June 2022, <https://www.rfc-editor.org/info
/rfc9112>.

[HTTP/2] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113, DOI 10.17487/
RFC9113, June 2022, <https://www.rfc-editor.org/info/rfc9113>.

[HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114, June 2022,
<https://www.rfc-editor.org/info/rfc9114>.

[JSON] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-
editor.org/info/rfc8259>.

[PROBLEM-DETAILS] Nottingham, M. and E. Wilde, "Problem Details for HTTP APIs", RFC 7807, DOI
10.17487/RFC7807, March 2016, <https://www.rfc-editor.org/info/rfc7807>.

[REFERRER-POLICY] Eisinger, J. and E. Stark, "Referrer Policy", W3C Candidate Recommendation
CR-referrer-policy-20170126, January 2017, <https://www.w3.org/TR/2017/CR-r
eferrer-policy-20170126>.

[RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP 56, RFC 3205, DOI
10.17487/RFC3205, February 2002, <https://www.rfc-editor.org/info/rfc3205>.

[RFC4791] Daboo, C., Desruisseaux, B., and L. Dusseault, "Calendaring Extensions to
WebDAV (CalDAV)", RFC 4791, DOI 10.17487/RFC4791, March 2007, <https:/
/www.rfc-editor.org/info/rfc4791>.

[RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV)", RFC 4918, DOI 10.17487/RFC4918, June 2007, <https:/
/www.rfc-editor.org/info/rfc4918>.

[RFC5861] Nottingham, M., "HTTP Cache-Control Extensions for Stale Content", RFC 5861,
DOI 10.17487/RFC5861, May 2010, <https://www.rfc-editor.org/info/rfc5861>.

[RFC6415] Hammer-Lahav, E., Ed. and B. Cook, "Web Host Metadata", RFC 6415, DOI
10.17487/RFC6415, October 2011, <https://www.rfc-editor.org/info/rfc6415>.

[RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict Transport Security (HSTS)",
RFC 6797, DOI 10.17487/RFC6797, November 2012, <https://www.rfc-editor.or
g/info/rfc6797>.

[RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an Attack", BCP 188,
RFC 7258, DOI 10.17487/RFC7258, May 2014, <https://www.rfc-editor.org/info
/rfc7258>.

[RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan, "Transport Layer Security
(TLS) Application-Layer Protocol Negotiation Extension", RFC 7301, DOI
10.17487/RFC7301, July 2014, <https://www.rfc-editor.org/info/rfc7301>.

[RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines and Registration
Procedures for URI Schemes", BCP 35, RFC 7595, DOI 10.17487/RFC7595, June
2015, <https://www.rfc-editor.org/info/rfc7595>.

[RFC7605] Touch, J., "Recommendations on Using Assigned Transport Port Numbers", BCP
165, RFC 7605, DOI 10.17487/RFC7605, August 2015, <https://www.rfc-editor.o
rg/info/rfc7605>.

[RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP Digest Access
Authentication", RFC 7616, DOI 10.17487/RFC7616, September 2015, <https://w
ww.rfc-editor.org/info/rfc7616>.

Nottingham Expires December 2022 [Page 23]

https://www.rfc-editor.org/rfc/rfc9112.html
https://www.rfc-editor.org/info/std99
https://dx.doi.org/10.17487/RFC9112
https://www.rfc-editor.org/rfc/rfc9113.html
https://dx.doi.org/10.17487/RFC9113
https://dx.doi.org/10.17487/RFC9113
https://www.rfc-editor.org/rfc/rfc9114.html
https://dx.doi.org/10.17487/RFC9114
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/info/std90
https://dx.doi.org/10.17487/RFC8259
https://www.rfc-editor.org/rfc/rfc7807.html
https://dx.doi.org/10.17487/RFC7807
https://dx.doi.org/10.17487/RFC7807
https://www.w3.org/TR/2017/CR-referrer-policy-20170126
https://www.rfc-editor.org/rfc/rfc3205.html
https://www.rfc-editor.org/info/bcp56
https://dx.doi.org/10.17487/RFC3205
https://dx.doi.org/10.17487/RFC3205
https://www.rfc-editor.org/rfc/rfc4791.html
https://www.rfc-editor.org/rfc/rfc4791.html
https://dx.doi.org/10.17487/RFC4791
https://www.rfc-editor.org/rfc/rfc4918.html
https://www.rfc-editor.org/rfc/rfc4918.html
https://dx.doi.org/10.17487/RFC4918
https://www.rfc-editor.org/rfc/rfc5861.html
https://dx.doi.org/10.17487/RFC5861
https://www.rfc-editor.org/rfc/rfc6415.html
https://dx.doi.org/10.17487/RFC6415
https://dx.doi.org/10.17487/RFC6415
https://www.rfc-editor.org/rfc/rfc6797.html
https://dx.doi.org/10.17487/RFC6797
https://www.rfc-editor.org/rfc/rfc7258.html
https://www.rfc-editor.org/info/bcp188
https://dx.doi.org/10.17487/RFC7258
https://www.rfc-editor.org/rfc/rfc7301.html
https://www.rfc-editor.org/rfc/rfc7301.html
https://dx.doi.org/10.17487/RFC7301
https://dx.doi.org/10.17487/RFC7301
https://www.rfc-editor.org/rfc/rfc7595.html
https://www.rfc-editor.org/rfc/rfc7595.html
https://www.rfc-editor.org/info/bcp35
https://dx.doi.org/10.17487/RFC7595
https://www.rfc-editor.org/rfc/rfc7605.html
https://www.rfc-editor.org/info/bcp165
https://www.rfc-editor.org/info/bcp165
https://dx.doi.org/10.17487/RFC7605
https://www.rfc-editor.org/rfc/rfc7616.html
https://www.rfc-editor.org/rfc/rfc7616.html
https://dx.doi.org/10.17487/RFC7616

RFC 9205 Building Protocols with HTTP June 2022

[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI
10.17487/RFC7617, September 2015, <https://www.rfc-editor.org/info/rfc7617>.

[RFC8297] Oku, K., "An HTTP Status Code for Indicating Hints", RFC 8297, DOI 10.17487/
RFC8297, December 2017, <https://www.rfc-editor.org/info/rfc8297>.

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC
8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc
8446>.

[RFC8470] Thomson, M., Nottingham, M., and W. Tarreau, "Using Early Data in HTTP",
RFC 8470, DOI 10.17487/RFC8470, September 2018, <https://www.rfc-editor.or
g/info/rfc8470>.

[RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)",
STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020, <https://www.rfc-
editor.org/info/rfc8949>.

[SECCTXT] West, M., "Secure Contexts", W3C Candidate Recommendation, September 2021,
<https://www.w3.org/TR/2021/CRD-secure-contexts-20210918>.

[URI-TEMPLATE] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and D. Orchard, "URI
Template", RFC 6570, DOI 10.17487/RFC6570, March 2012, <https://www.rfc-e
ditor.org/info/rfc6570>.

[XML] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and F. Yergeau, "Extensible
Markup Language (XML) 1.0 (Fifth Edition)", W3C Recommendation REC-
xml-20081126, November 2008, <https://www.w3.org/TR/2008/REC-xml-20081
126>.

Nottingham Expires December 2022 [Page 24]

https://www.rfc-editor.org/rfc/rfc7617.html
https://dx.doi.org/10.17487/RFC7617
https://dx.doi.org/10.17487/RFC7617
https://www.rfc-editor.org/rfc/rfc8297.html
https://dx.doi.org/10.17487/RFC8297
https://dx.doi.org/10.17487/RFC8297
https://www.rfc-editor.org/rfc/rfc8446.html
https://dx.doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8470.html
https://dx.doi.org/10.17487/RFC8470
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/info/std94
https://dx.doi.org/10.17487/RFC8949
https://www.w3.org/TR/2021/CRD-secure-contexts-20210918
https://www.rfc-editor.org/rfc/rfc6570.html
https://www.rfc-editor.org/rfc/rfc6570.html
https://dx.doi.org/10.17487/RFC6570
https://www.w3.org/TR/2008/REC-xml-20081126
https://www.w3.org/TR/2008/REC-xml-20081126

RFC 9205 Building Protocols with HTTP June 2022

Appendix A. Changes from RFC 3205

[RFC3205] captured the Best Current Practice in the early 2000s based on the concerns facing protocol
designers at the time. Use of HTTP has changed considerably since then; as a result, this document is
substantially different. Consequently, the changes are too numerous to list individually.

Nottingham Expires December 2022 [Page 25]

Author's Address

Mark Nottingham
Prahran
Australia
EMail: mnot@mnot.net
URI: https://www.mnot.net/

mailto:mnot@mnot.net
https://www.mnot.net/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Notational Conventions

	2 Is HTTP Being Used?
	2.1 Non-HTTP Protocols

	3 What's Important About HTTP
	3.1 Generic Semantics
	3.2 Links
	3.3 Rich Functionality

	4 Best Practices for Specifying the Use of HTTP
	4.1 Specifying the Use of HTTP
	4.2 Specifying Server Behaviour
	4.3 Specifying Client Behaviour
	4.4 Specifying URLs
	4.4.1 Discovering an Application's URLs
	4.4.2 Considering URI Schemes
	4.4.3 Choosing Transport Ports

	4.5 Using HTTP Methods
	4.5.1 GET
	4.5.2 OPTIONS

	4.6 Using HTTP Status Codes
	4.6.1 Redirection

	4.7 Specifying HTTP Header Fields
	4.8 Defining Message Content
	4.9 Leveraging HTTP Caching
	4.9.1 Freshness
	4.9.2 Stale Responses
	4.9.3 Caching and Application Semantics
	4.9.4 Varying Content Based Upon the Request

	4.10 Handling Application State
	4.11 Making Multiple Requests
	4.12 Client Authentication
	4.13 Coexisting with Web Browsing
	4.14 Maintaining Application Boundaries
	4.15 Using Server Push
	4.16 Allowing Versioning and Evolution

	5 IANA Considerations
	6 Security Considerations
	6.1 Privacy Considerations

	7 References
	7.1 Normative References
	7.2 Informative References

	Appendix A Changes from RFC 3205
	Author's Address

