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Abstract

To aid debugging, HTTP caches often append header fields to a response, explaining how they handled the
request in an ad hoc manner. This specification defines a standard mechanism to do so that is aligned with
HTTP's caching model.
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1.  Introduction

To aid debugging (both by humans and automated tools), HTTP caches often append header fields to a
response explaining how they handled the request. Unfortunately, the semantics of these header fields are often
unclear, and both the semantics and syntax used vary between implementations.

This specification defines a new HTTP response header field, "Cache-Status", for this purpose with
standardized syntax and semantics.

1.1.  Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here.

This document uses the following terminology from Section 3 of [STRUCTURED-FIELDS] to specify syntax
and parsing: List, String, Token, Integer, and Boolean.

This document also uses terminology from [HTTP] and [HTTP-CACHING].
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2.  The Cache-Status HTTP Response Header Field

The Cache-Status HTTP response header field indicates how caches have handled that response and its
corresponding request. The syntax of this header field conforms to [STRUCTURED-FIELDS].

Its value is a List. Each member of the List represents a cache that has handled the request. The first member
represents the cache closest to the origin server, and the last member represents the cache closest to the user
(possibly including the user agent's cache itself if it appends a value).

Caches determine when it is appropriate to add the Cache-Status header field to a response. Some might add it
to all responses, whereas others might only do so when specifically configured to, or when the request contains
a header field that activates a debugging mode. See Section 6 for related security considerations.

An intermediary SHOULD NOT append a Cache-Status member to responses that it generates locally, even
if that intermediary contains a cache, unless the generated response is based upon a stored response (e.g.,
304 (Not Modified) and 206 (Partial Content) are both based upon a stored response). For example, a proxy
generating a 400 response due to a malformed request will not add a Cache-Status value, because that response
was generated by the proxy, not the origin server.

When adding a value to the Cache-Status header field, caches SHOULD preserve the existing field value, to
allow debugging of the entire chain of caches handling the request.

Each List member identifies the cache that inserted it, and this identifier MUST be a String or Token.
Depending on the deployment, this might be a product or service name (e.g., "ExampleCache" or "Example
CDN"), a hostname ("cache-3.example.com"), an IP address, or a generated string.

Each member of the list can have parameters that describe that cache's handling of the request. While these
parameters are OPTIONAL, caches are encouraged to provide as much information as possible.

This specification defines the following parameters.

2.1.  The hit Parameter

The value of "hit" is a Boolean that, when true, indicates that the request was satisfied by the cache; that is, it
was not forwarded, and the response was obtained from the cache.

A response that was originally produced by the origin but was modified by the cache (for example, a 304 or
206 status code) is still considered a hit, as long as it did not go forward (e.g., for validation).

A response that was in cache but not able to be used without going forward (e.g., because it was stale or partial)
is not considered a hit. Note that a stale response that is used without going forward (e.g., because the origin
server is not available) can be considered a hit.

"hit" and "fwd" are exclusive; only one of them should appear on each list member.

2.2.  The fwd Parameter

"fwd", when present, indicates that the request went forward towards the origin; its value is a Token that
indicates why.

The following parameter values are defined to explain why the request went forward, from most specific to
least:

bypass:The cache was configured to not handle this request.

method:The request method's semantics require the request to be forwarded.

uri-
miss:

The cache did not contain any responses that matched the request URI.

vary-
miss:

The cache contained a response that matched the request URI, but it could not select a response based upon
this request's header fields and stored Vary header fields.
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miss:The cache did not contain any responses that could be used to satisfy this request (to be used when an
implementation cannot distinguish between uri-miss and vary-miss).

request:The cache was able to select a fresh response for the request, but the request's semantics (e.g., Cache-
Control request directives) did not allow its use.

stale:The cache was able to select a response for the request, but it was stale.

partial:The cache was able to select a partial response for the request, but it did not contain all of the requested
ranges (or the request was for the complete response).

The most specific reason known to the cache SHOULD be used, to the extent that it is possible to implement.
See also [HTTP-CACHING], Section 4.

2.3.  The fwd-status Parameter

The value of "fwd-status" is an Integer that indicates which status code (see [HTTP], Section 15) the next-hop
server returned in response to the forwarded request. The fwd-status parameter is only meaningful when fwd is
present. If fwd-status is not present but the fwd parameter is, it defaults to the status code sent in the response.

This parameter is useful to distinguish cases when the next-hop server sends a 304 (Not Modified) response to
a conditional request or a 206 (Partial Content) response because of a range request.

2.4.  The ttl Parameter

The value of "ttl" is an Integer that indicates the response's remaining freshness lifetime (see [HTTP-
CACHING], Section 4.2.1) as calculated by the cache, as an integer number of seconds, measured as closely as
possible to when the response header section is sent by the cache. This includes freshness assigned by the cache
through, for example, heuristics (see [HTTP-CACHING], Section 4.2.2), local configuration, or other factors. It
may be negative, to indicate staleness.

2.5.  The stored Parameter

The value of "stored" is a Boolean that indicates whether the cache stored the response (see [HTTP-
CACHING], Section 3); a true value indicates that it did. The stored parameter is only meaningful when fwd is
present.

2.6.  The collapsed Parameter

The value of "collapsed" is a Boolean that indicates whether this request was collapsed together with one or
more other forward requests (see [HTTP-CACHING], Section 4). If true, the response was successfully reused;
if not, a new request had to be made. If not present, the request was not collapsed with others. The collapsed
parameter is only meaningful when fwd is present.

2.7.  The key Parameter

The value of "key" is a String that conveys a representation of the cache key (see [HTTP-CACHING], Section
2) used for the response. Note that this may be implementation specific.

2.8.  The detail Parameter

The value of "detail" is either a String or a Token that allows implementations to convey additional information
not captured in other parameters, such as implementation-specific states or other caching-related metrics.

For example:

Cache-Status: ExampleCache; hit; detail=MEMORY
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The semantics of a detail parameter are always specific to the cache that sent it; even if a details parameter
from another cache shares the same value, it might not mean the same thing.

This parameter is intentionally limited. If an implementation's developer or operator needs to convey additional
information in an interoperable fashion, they are encouraged to register extension parameters (see Section 4) or
define another header field.
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3.  Examples

The following is an example of a minimal cache hit:

Cache-Status: ExampleCache; hit

However, a polite cache will give some more information, e.g.:

Cache-Status: ExampleCache; hit; ttl=376

A stale hit just has negative freshness, as in this example:

Cache-Status: ExampleCache; hit; ttl=-412

Whereas this is an example of a complete miss:

Cache-Status: ExampleCache; fwd=uri-miss

This is an example of a miss that successfully validated on the backend server:

Cache-Status: ExampleCache; fwd=stale; fwd-status=304

This is an example of a miss that was collapsed with another request:

Cache-Status: ExampleCache; fwd=uri-miss; collapsed

This is an example of a miss that the cache attempted to collapse, but couldn't:

Cache-Status: ExampleCache; fwd=uri-miss; collapsed=?0

The following is an example of going through two separate layers of caching, where the cache closest to the
origin responded to an earlier request with a stored response, and a second cache stored that response and later
reused it to satisfy the current request:

Cache-Status: OriginCache; hit; ttl=1100,
              "CDN Company Here"; hit; ttl=545

The following is an example of going through a three-layer caching system, where the closest to the origin
is a reverse proxy (where the response was served from cache); the next is a forward proxy interposed by the
network (where the request was forwarded because there wasn't any response cached with its URI, the request
was collapsed with others, and the resulting response was stored); and the closest to the user is a browser cache
(where there wasn't any response cached with the request's URI):

Cache-Status: ReverseProxyCache; hit
Cache-Status: ForwardProxyCache; fwd=uri-miss; collapsed; stored
Cache-Status: BrowserCache; fwd=uri-miss
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4.  Defining New Cache-Status Parameters

New Cache-Status parameters can be defined by registering them in the "HTTP Cache-Status" registry.

Registration requests are reviewed and approved by a designated expert, per [RFC8126], Section 4.5. A
specification document is appreciated but not required.

The expert(s) should consider the following factors when evaluating requests:

• Community feedback

• If the value is sufficiently well defined

• Generic parameters are preferred over vendor-specific, application-specific, or deployment-specific
values. If a generic value cannot be agreed upon in the community, the parameter's name should be
correspondingly specific (e.g., with a prefix that identifies the vendor, application, or deployment).

Registration requests should use the following template:

Name:[a name for the Cache-Status parameter's key; see Section 3.1.2 of [STRUCTURED-FIELDS] for syntactic
requirements]

Type:[the Structured Type of the parameter's value; see Section 3.1.2 of [STRUCTURED-FIELDS]]

Description:[a description of the parameter's semantics]

Reference:[to a specification defining this parameter, if available]

See the registry at <https://www.iana.org/assignments/http-cache-status> for details on where to send
registration requests.
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5.  IANA Considerations

IANA has created the "HTTP Cache-Status" registry at <https://www.iana.org/assignments/http-cache-status>
and populated it with the types defined in Section 2; see Section 4 for its associated procedures.

IANA has added the following entry in the "Hypertext Transfer Protocol (HTTP) Field Name Registry" defined
in [HTTP], Section 18.4:

Field
name:

Cache-Status

Status:permanent
Reference:RFC 9211
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6.  Security Considerations

Attackers can use the information in Cache-Status to probe the behavior of the cache (and other components)
and infer the activity of those using the cache. The Cache-Status header field may not create these risks on its
own, but it can assist attackers in exploiting them.

For example, knowing if a cache has stored a response can help an attacker execute a timing attack on sensitive
data.

Additionally, exposing the cache key can help an attacker understand modifications to the cache key, which
may assist cache poisoning attacks. See [ENTANGLE] for details.

The underlying risks can be mitigated with a variety of techniques (e.g., using encryption and authentication
and avoiding the inclusion of attacker-controlled data in the cache key), depending on their exact nature. Note
that merely obfuscating the key does not mitigate this risk.

To avoid assisting such attacks, the Cache-Status header field can be omitted, only sent when the client is
authorized to receive it, or sent with sensitive information (e.g., the key parameter) only when the client is
authorized.
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