Internet Engineering Task Force (IETF) M. Nottingham

Request for Comments; 9457 E. Wilde
Obsoletes: 7807 S. Dala
Category: Standards Track July 2023

ISSN: 2070-1721

Problem Detailsfor HTTP APIs
dr aft-ietf-nttpapi-rfc7807bis-07

Abstract

This document defines a " problem detail” to carry machine-readable details of errorsin HTTP response content
to avoid the need to define new error response formats for HTTP APIs.

This document obsoletes RFC 7807.

Status of ThisMemo

Thisis an Internet Standards Track document.

This document is aproduct of the Internet Engineering Task Force (IETF). It represents the consensus of

the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standardsis available in Section 2 of RFC
7841".

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at https://www.rfc-editor.org/info/rfc9457.

Copyright Notice

Copyright (c) 2023 IETF Trust and the personsidentified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review

these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Revised BSD License text as described in Section 4.e
of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

ERROR: User-supplied boilerplate differs from auto-generated boilerplate (inserting auto-generated); Strings differ
at position 367, 1st string endsin: [[[ection 2 of RFC 7841.Information about the current status of this document,
any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9457.Copyright
NoticeCopyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.This
document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.i
etf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully,
as they describe your rights and restrictions with respect to this document. Code Components extracted from this

1 https://www.rfc-editor.org/rfc/rfc7841.html#section-2
2 https://www.rfc-editor.org/info/rfc9457
s https://trustee.ietf.org/license-info

#rfc.authors.1
#rfc.authors.2
#RFC7807
#rfc.authors.3
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/info/rfc9457
https://trustee.ietf.org/license-info

RFC 9457 Problem Detailsfor HTTP APIs July 2023

document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.]]], 2nd string ends in; [[[ection 2 of RFC 78
4111 https://lwww.rfc-editor.org/rfc/rfc7841.html#section-2.Information about the current status of this document,
any errata, and how to provide feedback on it may be obtained at https.//www.rfc-editor.org/info/rfc945722 https://
www.rfc-editor.org/info/rfc9457.Copyright NoticeCopyright (c) 2023 IETF Trust and the personsidentified as the
document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions
Relating to IETF Documents (https://trustee.ietf.org/license-info33 https://trustee.ietf.org/license-info) in effect on
the date of publication of this document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document must include Revised
BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Revised BSD Licensel]]] (at line 6)

Nottingham, et al. Expires January 2024 [Page 2]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

Table of Contents

I oo 11 ot o o 1O OSSOSO 4
2 REQUITEMENTS LANGUAGE. eeeueteuirtiietee ettt sttt bbbt b s e st b st b e st b et b e e e b e e e b e e e bt b e st b e st s b et s be b 5
3 The Problem DetailS JSON ODJECL.......c.coiiiiiiiie ettt e s e et ae b b saesbesbe e 6
3.1 Members of a Problem DetailS ODJECL..........couecieiiiricise ettt sr et e e e e e e e eseeneenens 7
G T 0 17/ P 7
T = - {1 ST 8
00 e 11 =PTSRS 8
TN 0 1< -] TS SRS 8
TN LT 1 0 7T 0= R 8
T g =050 1Y 0 0 9
4 DefiNiNG NEW ProDIEM TYPES.. ..ottt sttt e a et b et bt b ettt be et se e b e b e 10
R = 0 o[RS SRR 10
4.2 ReQISEred ProDIEM TYPES....oci ittt sttt e st e et e e s e e seeseeaesbesbesaesbesbeseetentesee s eneeneeneens 10
N - o | o) TR 11
IS = o U] YA O] = Lo (== o LSS 12
(SR N N TN @0 g 1= o [=L o] ST 13
T REFBI BINCES.. ..ttt ettt et h et he bRt RS h e b e R A e b e £ e R e b et et e Rt e Rt et Rt ebeebenaeeaea 14
4% R [g 1= RV = = = = o= SRRSO 14
A 2 10 00T RV L = = oo 14
Appendix A JSON Schema for HTTP ProblemS.........oo ettt 16
Appendix B HTTP Problems @nd XMLc..ooeenene st et sb b s sne e 17
Appendix C Using Problem Details with Other FOrmats.........ccvovveieiereerieerece s s 19
Appendix D Changes from RFC 7807ccuiiiiiereeie sttt sttt b ettt sbe e 20
A CKNOWIEOGEIMENTS. ...ttt ettt e e st ae et e ae et e s aesaeeb e bese e e e e e e e aeemeemeemeeneebeeseeaeebeebeseeseenbeseeseennan 21
AULNOTS AGOINESSES.... ittt bt b et b bt e e b b et et e bt e h e e aeeheeb e bt ehe e b e s bt sE e b e bese e e e n e e st e neeseebeebesaesbenaenee 22

Nottingham, et al. Expires January 2024 [Page 3]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

1. Introduction

HTTP status codes (Section 15 of [HTTP]) cannot always convey enough information about errorsto be
helpful. While humans using web browsers can often understand an HTML [HTML5] response content, non-
human consumers of HTTP APIs have difficulty doing so.

To address that shortcoming, this specification defines simple JSON [JSON] and XML [XML] document
formats to describe the specifics of a problem encountered -- "problem details".

For example, consider a response indicating that the client's account doesn't have enough credit. The API's
designer might decide to use the 403 Forbidden status code to inform generic HT TP software (such as client
libraries, caches, and proxies) of the response's general semantics. API-specific problem details (such as why
the server refused the request and the applicable account balance) can be carried in the response content so that
the client can act upon them appropriately (for example, triggering atransfer of more credit into the account).

This specification identifies the specific "problem type" (e.g., "out of credit") with aURI [URI]. HTTP APIs
can use URIs under their control to identify problems specific to them or can reuse existing ones to facilitate
interoperability and leverage common semantics (see Section 4.2).

Problem details can contain other information, such as a URI identifying the problem's specific occurrence
(effectively giving an identifier to the concept "The time Joe didn't have enough credit last Thursday"), which
can be useful for support or forensic purposes.

The data mode! for problem detailsis a JSON [JSON] object; when serialized as a JSON document, it uses
the "application/problem+json” mediatype. Appendix B defines an equivalent XML format, which usesthe
"application/problem+xml" mediatype.

When they are conveyed in an HT TP response, the contents of problem details can be negotiated using
proactive negotiation; see Section 12.1 of [HTTP]. In particular, the language used for human-readable strings
(such asthose in title and description) can be negotiated using the Accept-L anguage request header field
(Section 12.5.4 of [HTTRP)]), although that negotiation may still result in a non-preferred, default representation
being returned.

Problem details can be used with any HTTP status code, but they most naturaly fit the semantics of 4xx and
5xx responses. Note that problem details are (naturally) not the only way to convey the details of a problemin
HTTP. If the responseis still arepresentation of aresource, for example, it's often preferable to describe the
relevant details in that application's format. Likewise, defined HTTP status codes cover many situations with
no need to convey extra detail.

This specification's aim is to define common error formats for applications that need one so that they aren't
required to define their own or, worse, tempted to redefine the semantics of existing HTTP status codes. Even
if an application chooses not to use it to convey errors, reviewing its design can help guide the design decisions
faced when conveying errorsin an existing format.

See Appendix D for alist of changes from [RFC7807].

Nottingham, et al. Expires January 2024 [Page 4]

https://www.rfc-editor.org/rfc/rfc9110.html#section-15
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.4

RFC 9457 Problem Detailsfor HTTP APIs July 2023

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are

to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here,

Nottingham, et al. Expires January 2024 [Page 5]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

3. TheProblem Details JSON Object

The canonical model for problem detailsis a JSON [JSON] object. When serialized in a JSON document, that
format is identified with the "application/problem+json” media type.

For example:

PCST /purchase HTTP/ 1.1

Host: store.exanple.com

Cont ent - Type: application/json

Accept: application/json, application/probl emtjson

{
"itent: 123456,

"quantity": 2
}

HTTP/ 1.1 403 Forbi dden
Cont ent - Type: appli cation/ probl emtj son
Cont ent - Language: en

{
"type": "https://exanpl e.com probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 30, but that costs 50.",
"instance": "/account/ 12345/ nsgs/ abc",

"bal ance": 30,
"accounts": ["/account/12345",
"/account/67890"]

}

Here, the out-of-credit problem (identified by its type) indicates the reason for the 403 in "title", identifies

the specific problem occurrence with "instance”, gives occurrence-specific details in "detail”, and adds two
extensions: "balance" conveys the account's balance, and "accounts" lists links where the account can be topped
up.

When designed to accommodate it, problem-specific extensions can convey more than one instance of the same
problem type. For example:

POST /details HITP/ 1.1
Host: account. exanpl e. com
Accept: application/json

{
"age": 42.3,
"profile": {
"color": "yell ow'
}
}

Nottingham, et al. Expires January 2024 [Page 6]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

HTTP/ 1.1 422 Unprocessabl e Cont ent
Cont ent - Type: applicati on/ probl emtj son
Cont ent - Language: en
{
"type": "https://exanple.net/validation-error",
"title": "Your request is not valid."
"errors": |
{
"detail": "nmust be a positive integer",
"pointer": "#/ age"
I
{
"detail": "nmust be 'green', 'red' or 'blue'"
"pointer": "#/ profilelcolor"
}
]
}

Thefictiona problem type here defines the "errors’ extension, an array that describes the details of each
validation error. Each member is an object containing "detail" to describe the issue and "pointer" to locate the
problem within the request's content using a JSON Pointer [JSON-POINTER].

When an API encounters multiple problems that do not share the same type, it is RECOMMENDED that the
most relevant or urgent problem be represented in the response. While it is possible to create generic "batch"
problem types that convey multiple, disparate types, they do not map well into HTTP semantics.

Note also that the API has responded with the "application/problem+json” type, even though the client did not
listitin Accept, asisallowed by HTTP (see Section 12.5.1 of [HTTF]).

3.1. Membersof a Problem Details Object

Problem detail objects can have the following members. If a member's value type does not match the specified
type, the member MUST beignored -- i.e., processing will continue as if the member had not been present.

3.1.1 "type"

The "type" member isa JSON string containing a URI reference [URI] that identifies the problem type.
Consumers MUST use the "type" URI (after resolution, if necessary) as the problem type's primary identifier.

When this member is not present, its value is assumed to be "about:blank".

If the type URI isalocator (e.g., those with an "http" or "https" scheme), dereferencing it SHOULD provide
human-readable documentation for the problem type (e.g., using HTML [HTMLJ5]). However, consumers
SHOULD NOT automatically dereference the type URI, unless they do so when providing information to
developers (e.g., when a debugging tool isin use).

When "type" contains arelative URI, it is resolved relative to the document's base URI, as per [URI],
Section 5. However, using relative URIs can cause confusion, and they might not be handled correctly by all
implementations.

For example, if the two resources "https://api.example.org/foo/bar/123" and "https://api.example.org/
widget/456" both respond with a"type" equal to the relative URI reference "example-problem", when resolved
they will identify different resources ("https://api.example.org/foo/bar/example-problem” and "https://

api.exampl e.org/widget/example-problem", respectively). Asaresult, itis RECOMMENDED that absolute
URIs be used in "type" when possible and that when relative URIs are used, they include the full path (e.g., "/
types/123*).

Nottingham, et al. Expires January 2024 [Page 7]

https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1
https://www.rfc-editor.org/rfc/rfc3986.html#section-5

RFC 9457 Problem Detailsfor HTTP APIs July 2023

The type URI is allowed to be a non-resolvable URI. For example, the tag URI scheme [TAG] can be used to
uniquely identify problem types:

t ag: exanmpl e@xanpl e. or g, 2021- 09- 17: Qut Of Luck

However, resolvable type URIs are encouraged by this specification because it might become desirable to
resolve the URI in the future. For example, if an API designer used the URI above and later adopted atool that
resolves type URIs to discover information about the error, taking advantage of that capability would require
switching to aresolvable URI, creating a new identity for the problem type and thus introducing a breaking
change.

3.1.2. "status'

The "status' member isa JSON number indicating the HTTP status code ([HTTP], Section 15) generated by
the origin server for this occurrence of the problem.

The "status' member, if present, is only advisory; it conveys the HTTP status code used for the convenience of
the consumer. Generators MUST use the same status code in the actual HTTP response, to assure that generic
HTTP software that does not understand this format still behaves correctly. See Section 5 for further caveats
regarding its use.

Consumers can use the status member to determine what the original status code used by the generator was
when it has been changed (e.g., by an intermediary or cache) and when a message's content is persisted without
HTTP information. Generic HT TP software will still use the HTTP status code.

3.1.3. "title"
The "title" member isa JSON string containing a short, human-readable summary of the problem type.

It SHOULD NOT change from occurrence to occurrence of the problem, except for localization (e.g., using
proactive content negotiation; see [HTTP], Section 12.1).

The "title" string is advisory and isincluded only for users who are unaware of and cannot discover the
semantics of the type URI (e.g., during offline log analysis).
3.1.4. "detail"

The "detail" member isa JSON string containing a human-readable explanation specific to this occurrence of
the problem.

The"detail" string, if present, ought to focus on helping the client correct the problem, rather than giving
debugging information.

Consumers SHOULD NOT parse the "detail" member for information; extensions are more suitable and less
error-prone ways to obtain such information.
3.1.5. "instance"

The "instance" member is a JSON string containing a URI reference that identifies the specific occurrence of
the problem.

When the "instance" URI is dereferenceable, the problem details object can be fetched from it. It might also
return information about the problem occurrence in other formats through use of proactive content negotiation
(see[HTTP], Section 12.5.1).

When the "instance”" URI is not dereferenceable, it serves as a unique identifier for the problem occurrence that
may be of significance to the server but is opaque to the client.

When "instance" contains arelative URI, it isresolved relative to the document's base URI, as per [URI],
Section 5. However, using relative URIs can cause confusion, and they might not be handled correctly by all
implementations.

Nottingham, et al. Expires January 2024 [Page §]

https://www.rfc-editor.org/rfc/rfc9110.html#section-15
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1
https://www.rfc-editor.org/rfc/rfc3986.html#section-5

RFC 9457 Problem Detailsfor HTTP APIs July 2023

For example, if the two resources "https:.//api.example.org/foo/bar/123" and "https:.//api.example.org/
widget/456" both respond with an "instance" equal to the relative URI reference "example-instance”, when
resolved they will identify different resources ("https.//api.example.org/foo/bar/example-instance" and "https.//
api.example.org/widget/example-instance”, respectively). As aresult, it is RECOMMENDED that absolute
URIs be used in "instance" when possible, and that when relative URIs are used, they include the full path (e.g.,
"/instances/123").

3.2. Extension Members
Problem type definitions MAY extend the problem details object with additional members that are specific to
that problem type.

For example, our out-of-credit problem above defines two such extensions -- "balance" and "accounts" to
convey additional, problem-specific information.

Similarly, the "validation error" example defines an "errors" extension that contains alist of individual error
occurrences found, with details and a pointer to the location of each.

Clients consuming problem details MUST ignore any such extensions that they don't recognize; this allows
problem types to evolve and include additional information in the future.

When creating extensions, problem type authors should choose their names carefully. To be used in the XML
format (see Appendix B), they will need to conform to the Name rule in Section 2.3 of [XML].

Nottingham, et al. Expires January 2024 [Page 9]

https://www.w3.org/TR/2008/REC-xml-20081126/#NT-Name

RFC 9457 Problem Detailsfor HTTP APIs July 2023

4. Defining New Problem Types

When an HTTP API needs to define aresponse that indicates an error condition, it might be appropriate to do
so by defining a new problem type.

Before doing so, it'simportant to understand what they are good for and what is better |€eft to other
mechanisms.

Problem details are not a debugging tool for the underlying implementation; rather, they are away to expose
greater detail about the HTTP interface itself. Designers of new problem types need to carefully take into
account the Security Considerations (Section 5), in particular, the risk of exposing attack vectors by exposing
implementation internal s through error messages.

Likewise, truly generic problems -- i.e., conditions that might apply to any resource on the Web -- are
usually better expressed as plain status codes. For example, a "write access disallowed" problem is probably
unnecessary, since a 403 Forbidden status code in response to a PUT request is self-explanatory.

Finally, an application might have a more appropriate way to carry an error in aformat that it already defines.
Problem details are intended to avoid the necessity of establishing new "fault" or "error" document formats, not
to replace existing domain-specific formats.

That said, it is possible to add support for problem details to existing HTTP APIsusing HT TP content
negotiation (e.g., using the Accept request header to indicate a preference for this format; see [HTTP], Section
12.5.1).

New problem type definitions MUST document:

1. atype URI (typically, with the "http" or "https' scheme)
2. atitlethat appropriately describesit (think short)
3. the HTTP status code for it to be used with

Problem type definitions MAY specify the use of the Retry-After response header ([HTTP], Section 10.2.3) in
appropriate circumstances.

A problem type URI SHOULD resolve to HTML [HTML5] documentation that explains how to resolve the
problem.

A problem type definition MAY specify additional members on the problem details object. For example, an
extension might use typed links [WEB-LINKING] to another resource that machines can use to resolve the
problem.

If such additional members are defined, their names SHOULD start with aletter (ALPHA, as per [ABNF],
Appendix B.1) and SHOULD comprise characters from ALPHA, DIGIT ([ABNF], Appendix B.1), and"_" (so
that it can be serialized in formats other than JSON), and they SHOULD be three characters or longer.

4.1. Example

For example, if you are publishing an HTTP API to your online shopping cart, you might need to indicate that
the user is out of credit (our example from above) and therefore cannot make the purchase.

If you already have an application-specific format that can accommodate this information, it's probably best to
do that. However, if you don't, you might use one of the problem detail formats -- JSON if your API is JSON-
based or XML if it uses that format.

To do so, you might look in the registry (Section 4.2) for an aready-defined type URI that suits your purposes.
If oneisavailable, you can reuse that URI.

If oneisn't available, you could mint and document a new type URI (which ought to be under your control and
stable over time), an appropriate title and the HT TP status code that it will be used with, along with what it
means and how it should be handled.

Nottingham, et al. Expires January 2024 [Page 10]

https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-12.5.1
https://www.rfc-editor.org/rfc/rfc9110.html#section-10.2.3
https://www.rfc-editor.org/rfc/rfc5234.html#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234.html#appendix-B.1

RFC 9457 Problem Detailsfor HTTP APIs July 2023

4.2. Registered Problem Types

This specification defines the "HTTP Problem Types' registry for common, widely used problem type URIs, to
promote reuse.

The policy for thisregistry is Specification Required, per [RFC8126], Section 4.6.

When evaluating requests, the designated expert(s) should consider community feedback, how well-defined the
problem typeis, and this specification's requirements. V endor-specific, application-specific, and deployment-
specific values are unable to be registered. Specification documents should be published in a stable, freely
available manner (ideally located with a URL) but need not be standards.

Registrations MAY use the prefix "https://iana.org/assignments/http-problem-types#" for the type URI. Note
that those URIs may not be able to be resolved.

The following template should be used for registration requests:

Typ@ URI for the problem type]

URI:

Titlga short description of the problem type]

Rechwinaesidids code is most appropriate to use with the type]
HTTP

status

code:

Ref greracepecification defining the type]

See theregistry at <https:.//iana.org/assignments/http-problem-types> for details on where to send registration
requests.

4.2.1. about:blank
This specification registers one Problem Type, "about:blank", as follows.

Typabout:blank

URI:

Titl&e HTTP Status Code
RechifAimended

HTTP

status

code:

Ref@Bare457

The "about:blank" URI [ABOUT], when used as a problem type, indicates that the problem has no additional
semantics beyond that of the HTTP status code.

When "about:blank” is used, the title SHOULD be the same as the recommended HT TP status phrase for that
cade (e.g., "Not Found" for 404, and so on), although it MAY be localized to suit client preferences (expressed
with the Accept-L anguage request header).

Please note that according to how the "type" member is defined (Section 3.1), the "about:blank” URI isthe
default value for that member. Consequently, any problem details object not carrying an explicit "type"
member implicitly usesthis URI.

Nottingham, et al. Expires January 2024 [Page 11]

https://www.rfc-editor.org/rfc/rfc8126.html#section-4.6
https://iana.org/assignments/http-problem-types#
https://iana.org/assignments/http-problem-types

RFC 9457 Problem Detailsfor HTTP APIs July 2023

5. Security Considerations

When defining a new problem type, the information included must be carefully vetted. Likewise, when actually
generating a problem -- however it is serialized -- the details given must a so be scrutinized.

Risks include leaking information that can be exploited to compromise the system, access to the system, or the
privacy of users of the system.

Generators providing links to occurrence information are encouraged to avoid making implementation details
such as a stack dump available through the HTTP interface, since this can expose sensitive details of the server
implementation, its data, and so on.

The "status' member duplicates the information available in the HTTP status code itself, bringing the
possibility of disagreement between the two. Their relative precedence is not clear, since a disagreement might
indicate that (for example) an intermediary has changed the HT TP status code in transit (e.g., by aproxy or
cache). Generic HTTP software (such as proxies, load balancers, firewalls, and virus scanners) are unlikely to
know of or respect the status code conveyed in this member.

Nottingham, et al. Expires January 2024 [Page 12]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

6. IANA Considerations

In the "application” registry under the "Media Types' registry, IANA has updated the "application/problem
+json" and "application/problem+xml" registrationsto refer to this document.

IANA has created the "HTTP Problem Types' registry as specified in Section 4.2 and populated it with
"about:blank" as per Section 4.2.1.

Nottingham, et al. Expires January 2024 [Page 13]

RFC 9457

7. References

7.1. Normative References
[ABNF]

[HTTP]

[JSON]

[RFC2119]

[RFC8126]

[RFC8174]

[URI]

[XML]

7.2. Informative References
[ABOUT]

[HTMLS5]

[1SO-19757-2]

[JSON-POINTER]

[JSON-SCHEMA]

Nottingham, et al.

Problem Detailsfor HTTP APIs

July 2023

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234,
January 2008, <https://www.rfc-editor.org/info/rfc5234>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP
Semantics', STD 97, RFC 9110, DOI 10.17487/RFC9110, June 2022,
<https.//www.rfc-editor.org/info/rfc9110>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259, DOI 10.17487/RFC8259,
December 2017, <https://www.rfc-editor.org/info/rfc8259>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels', BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an
IANA Considerations Section in RFCs', BCP 26, RFC 8126, DOI
10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8
126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercasein RFC 2119 Key
Words', BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource
Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/
RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>.

Bray, T., Paoli, J., Sperberg-McQueen, C., Mdler, E., and F. Y ergeau,
"Extensible Markup Language (XML) 1.0 (Fifth Edition)", W3C
Recommendation REC-xml-20081126, November 2008, <https.//ww
w.w3.0rg/TR/2008/REC-xmI-20081126/>.

Moonesamy, S., Ed., "The "about" URI Scheme", RFC 6694, DOl
10.17487/RFC6694, August 2012, <https.//www.rfc-editor.org/info/rf
c6694>.

WHATWG, "HTML: Living Standard", <https://html.spec.whatwg.or
o>.

IS0, "Information technology -- Document Schema Definition
Language (DSDL) -- Part 2: Regular-grammar-based validation --
RELAX NG", ISO/IEC 19757-2:2008, December 2008, <https://www
.iso.org/standard/52348.html >.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed., " JavaScript Object
Notation (JSON) Pointer”, RFC 6901, DOI 10.17487/RFC6901, April
2013, <https://www.rfc-editor.org/info/rfc6901>.

Wright, A., Ed., Andrews, H., Ed., Hutton, B., Ed., and G. Dennis,
"JSON Schema: A Media Type for Describing JSON Documents”,
Work in Progress, draft-bhutton-json-schema-01, Work in Progress,

Expires January 2024 [Page 14]

https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/info/std68
https://dx.doi.org/10.17487/RFC5234
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/info/std97
https://dx.doi.org/10.17487/RFC9110
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/rfc/rfc8259.html
https://www.rfc-editor.org/info/std90
https://dx.doi.org/10.17487/RFC8259
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc8126.html
https://www.rfc-editor.org/rfc/rfc8126.html
https://www.rfc-editor.org/info/bcp26
https://dx.doi.org/10.17487/RFC8126
https://dx.doi.org/10.17487/RFC8126
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC8174
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/info/std66
https://dx.doi.org/10.17487/RFC3986
https://dx.doi.org/10.17487/RFC3986
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.rfc-editor.org/rfc/rfc6694.html
https://dx.doi.org/10.17487/RFC6694
https://dx.doi.org/10.17487/RFC6694
https://html.spec.whatwg.org
https://www.iso.org/standard/52348.html
https://www.iso.org/standard/52348.html
https://www.iso.org/standard/52348.html
https://www.rfc-editor.org/rfc/rfc6901.html
https://www.rfc-editor.org/rfc/rfc6901.html
https://dx.doi.org/10.17487/RFC6901
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://datatracker.ietf.org/doc/draft-bhutton-json-schema

RFC 9457

[RDFA]

[RFC7807]

[TAG]

[WEB-LINKING]

[XSLT]

Nottingham, et al.

Problem Detailsfor HTTP APIs July 2023

June 2022, <https.//datatracker.ietf.org/doc/html/draft-bhutton-json-sc
hema-01>.

Adida, B., Birbeck, M., McCarron, S., and ., "RDFaCore 1.1 - Third
Edition", W3C Recommendation, March 2015, <https.//www.w3.org/
TR/2015/REC-rdfa-core-20150317/>.

Nottingham, M. and E. Wilde, "Problem Detailsfor HTTP APIS',
RFC 7807, DOI 10.17487/RFC7807, March 2016, <https.//www.rfc-e
ditor.org/info/rfc7807>.

Kindberg, T. and S. Hawke, "The 'tag' URI Scheme", RFC 4151, DOI
10.17487/RFCA4151, October 2005, <https.//www.rfc-editor.org/infol/r
fc4151>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/RFC8288,
October 2017, <https://www.rfc-editor.org/info/rfc8288>.

Clark, J., Pieters, S., and H. , "Associating Style Sheets with XML
documents 1.0 (Second Edition)", W3C Recommendation, October
2010, <https://lwww.w3.0rg/ TR/2010/REC-xml-styl esheet-20101028/
>,

Expires January 2024 [Page 15]

https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.rfc-editor.org/rfc/rfc7807.html
https://dx.doi.org/10.17487/RFC7807
https://www.rfc-editor.org/rfc/rfc4151.html
https://dx.doi.org/10.17487/RFC4151
https://dx.doi.org/10.17487/RFC4151
https://www.rfc-editor.org/rfc/rfc8288.html
https://dx.doi.org/10.17487/RFC8288
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/

RFC 9457 Problem Detailsfor HTTP APIs

Appendix A. JSON Schemafor HTTP Problems

July 2023

This section presents a non-normative JISON Schema [JSON-SCHEMA] for HTTP problem details. If thereis

any disagreement between it and the text of the specification, the latter prevails.

NOTE: '\' line wapping per RFC 8792
{
"$schema": "https://json-schena.org/draft/2020-12/schema",
"title": "An RFC 7807 probl em object",
"type": "object",
"properties": {

"type': {
"type": "string",
"format": "uri-reference",
"description": "A URl reference that identifies the \

probl em type. "

"title": {
"type": "string",
"description": "A short, human-readable sumary of the \
probl em type. "
I s
"status": {
"type": "integer",

"description": "The HITP status code \

generated by the origin server for this occurrence of the problem",
"m ni nunt': 100,
"maxi munt': 599

I s
"detail": {
"type": "string",
"description": "A human-readabl e expl anation specific to \
this occurrence of the problem"”
I s

"instance": {
"type": "string",
"format": "uri-reference",
"description": "A URl reference that identifies the \
specific occurrence of the problem It nmay or may not yield \
further information if dereferenced.”

}
}
}

Nottingham, et al. Expires January 2024

[Page 16]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

Appendix B. HTTP Problemsand XML

HTTP-based APIsthat use XML [XML] can express problem details using the format defined in this appendix.
The RELAX NG schema[lSO-19757-2] for the XML format is:

default nanmespace ns = "urn:ietf:rfc:7807"
start = problem

probl em =
el ement probl em{

(elenment type
& elenent title
& elenment detail
& el enent status
& el enent instance

anyNsEl enent

xsd: anyURl }?
xsd:string }?
xsd:string }?

xsd: positivel nteger }7?
xsd: anyURI }?),

Lt Nt e Waan Woen

}
anyNsEl enent =
(elenent ns:* { anyNsEl enent | text }
| attribute * { text })*

Note that this schema is only intended as documentation and not as a normative schema that captures all
constraints of the XML format. It is possible to use other XML schema languages to define a similar set of
constraints (depending on the features of the chosen schema language).

The mediatype for thisformat is "application/problem+xml".

Extension arrays and objects are serialized into the XML format by considering an element containing a child
or children to represent an object, except for elements containing only one or more child el ements named "i",
which are considered arrays. For example, the example above appearsin XML asfollows:

HTTP/ 1.1 403 For bi dden
Cont ent - Type: appli cati on/ probl emtxmni
Cont ent - Language: en

<?xm version="1.0" encodi ng="UTF-8"?>
<probl em xm ns="urn:ietf:rfc:7807">
<type>https://exanpl e. com probs/out-of-credit</type>
<title>You do not have enough credit.</title>
<det ai | >Your current balance is 30, but that costs 50.</detail >
<i nst ance>htt ps://exanpl e. net/account/ 12345/ nsgs/ abc</ i nst ance>
<bal ance>30</ bal ance>
<account s>
<i >https://exanpl e. net/account/12345</i >
<i >https://exanpl e. net/account/67890</i >
</ account s>
</ probl en>

Thisformat uses an XML namespace, primarily to allow embedding it into other XML-based formats; it does
not imply that it can or should be extended with elements or attributesin other namespaces. The RELAX NG
schema explicitly only allows el ements from the one namespace used in the XML format. Any extension arrays
and objects MUST be seriaized into XML markup using only that namespace.

Nottingham, et al. Expires January 2024 [Page 17]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

When using the XML format, it is possible to embed an XML processing instruction in the XML that instructs
clientsto transform the XML, using the referenced XSL Transformations (XSLT) code [XSLT]. If this code
istransforming the XML into (X)HTML, then it is possible to serve the XML format, and yet have clients
capable of performing the transformation display human-friendly (X)HTML that is rendered and displayed at
the client. Note that when using this method, it is advisableto use XSLT 1.0 in order to maximize the number
of clients capable of executing the XSLT code.

Nottingham, et al. Expires January 2024 [Page 18]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

Appendix C. Using Problem Detailswith Other Formats

In some situations, it can be advantageous to embed problem details in formats other than those described here.
For example, an API that usesHTML [HTML5] might want to also use HTML for expressing its problem
details.

Problem details can be embedded in other formats either by encapsulating one of the existing seriaizations
(JSON or XML) into that format or by translating the model of a problem detail (as specified in Section 3) into
the format's conventions.

For example, in HTML, a problem could be embedded by encapsulating JSON in a script tag:

<script type="application/probl emtjson">

{
"type": "https://exanpl e.com probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 30, but that costs 50.",

"instance": "/account/ 12345/ nsgs/ abc",
"bal ance": 30,
"accounts": ["/account/12345",
"/account/67890"]
}

</script>

or by defining a mapping into a Resource Description Framework in Attributes (RDFa) [RDFA].

This specification does not make specific recommendations regarding embedding problem details in other
formats; the appropriate way to embed them depends both upon the format in use and application of that
format.

Nottingham, et al. Expires January 2024 [Page 19]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

Appendix D. Changesfrom RFC 7807

This revision has made the following changes:

e Section 4.2 introduces aregistry of common problem type URIs
» Section 3 clarifies how multiple problems should be treated
e Section 3.1.1 provides guidance for using type URIs that cannot be dereferenced

Nottingham, et al. Expires January 2024 [Page 20]

RFC 9457 Problem Detailsfor HTTP APIs July 2023

Acknowledgements

The authors would like to thank Jan Algermissen, Subbu Allamaraju, Mike Amundsen, Roy Fielding, Eran
Hammer, Sam Johnston, Mike McCall, Julian Reschke, and James Snell for their comments and suggestions.

Nottingham, et al. Expires January 2024 [Page 21]

Authors Addresses

Mark Nottingham
Prahran
Australia

EMail: mnot@mnot.net
URI: https://www.mnot.net/

Erik Wilde
EMail: erik.wilde@dret.net
URI: http://dret.net/netdret/

Sanjay Dalal

United States of America

EMail: sanjay.dalal @cal .berkeley.edu
URI: https://github.com/sdatspun2

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:erik.wilde@dret.net
http://dret.net/netdret/
mailto:sanjay.dalal@cal.berkeley.edu
https://github.com/sdatspun2

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	2 Requirements Language
	3 The Problem Details JSON Object
	3.1 Members of a Problem Details Object
	3.1.1 "type"
	3.1.2 "status"
	3.1.3 "title"
	3.1.4 "detail"
	3.1.5 "instance"

	3.2 Extension Members

	4 Defining New Problem Types
	4.1 Example
	4.2 Registered Problem Types
	4.2.1 about:blank

	5 Security Considerations
	6 IANA Considerations
	7 References
	7.1 Normative References
	7.2 Informative References

	Appendix A JSON Schema for HTTP Problems
	Appendix B HTTP Problems and XML
	Appendix C Using Problem Details with Other Formats
	Appendix D Changes from RFC 7807
	Acknowledgements
	Authors' Addresses

