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Abstract
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1.  Introduction

HTTP does not define the means to protect the data integrity of content or representations. When HTTP
messages are transferred between endpoints, lower-layer features or properties such as TCP checksums or TLS
records [TLS] can provide some integrity protection. However, transport-oriented integrity provides a limited
utility because it is opaque to the application layer and only covers the extent of a single connection. HTTP
messages often travel over a chain of separate connections. In between connections, there is a possibility for
data corruption. An HTTP integrity mechanism can provide the means for endpoints, or applications using
HTTP, to detect data corruption and make a choice about how to act on it. An example use case is to aid fault
detection and diagnosis across system boundaries.

This document defines two digest integrity mechanisms for HTTP. First, content integrity, which acts on
conveyed content (Section 6.4 of [HTTP]). Second, representation data integrity, which acts on representation
data (Section 8.1 of [HTTP]). This supports advanced use cases, such as validating the integrity of a resource
that was reconstructed from parts retrieved using multiple requests or connections.

This document obsoletes [RFC3230] and therefore the Digest and Want-Digest HTTP fields; see Section
1.3.

1.1.  Document Structure

This document is structured as follows:

•New request and response header and trailer field definitions.

• Section 2 (Content-Digest),

• Section 3 (Repr-Digest), and

• Section 4 (Want-Content-Digest and Want-Repr-Digest).

•Considerations specific to representation data integrity.

• Section 3.1 (State-changing requests),

• Section 3.2 (Content-Location),

• Appendix A contains worked examples of representation data in message exchanges, and

• Appendixes B and C contain worked examples of Repr-Digest and Want-Repr-Digest fields in
message exchanges.

• Section 5 presents hash algorithm considerations and defines registration procedures for future entries.

1.2.  Concept Overview

The HTTP fields defined in this document can be used for HTTP integrity. Senders choose a hashing algorithm
and calculate a digest from an input related to the HTTP message. The algorithm identifier and digest are
transmitted in an HTTP field. Receivers can validate the digest for integrity purposes. Hashing algorithms are
registered in the "Hash Algorithms for HTTP Digest Fields" registry (see Section 7.2).

Selecting the data on which digests are calculated depends on the use case of the HTTP messages. This
document provides different fields for HTTP representation data and HTTP content.

There are use cases where a simple digest of the HTTP content bytes is required. The Content-Digest
request and response header and trailer field is defined to support digests of content (Section 6.4 of [HTTP]);
see Section 2.

For more advanced use cases, the Repr-Digest request and response header and trailer field (Section 3)
is defined. It contains a digest value computed by applying a hashing algorithm to selected representation
data (Section 8.1 of [HTTP]). Basing Repr-Digest on the selected representation makes it straightforward
to apply it to use cases where the message content requires some sort of manipulation to be considered as
representation of the resource or the content conveys a partial representation of a resource, such as range
requests (see Section 14 of [HTTP]).
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Content-Digest and Repr-Digest support hashing algorithm agility. The Want-Content-Digest
and Want-Repr-Digest fields allow endpoints to express interest in Content-Digest and Repr-
Digest, respectively, and to express algorithm preferences in either.

Content-Digest and Repr-Digest are collectively termed "Integrity fields". Want-Content-
Digest and Want-Repr-Digest are collectively termed "Integrity preference fields".

Integrity fields are tied to the Content-Encoding and Content-Type header fields. Therefore, a given
resource may have multiple different digest values when transferred with HTTP.

Integrity fields apply to HTTP message content or HTTP representations. They do not apply to HTTP messages
or fields. However, they can be combined with other mechanisms that protect metadata, such as digital
signatures, in order to protect the phases of an HTTP exchange in whole or in part. For example, HTTP
Message Signatures [SIGNATURES] could be used to sign Integrity fields, thus providing coverage for HTTP
content or representation data.

This specification does not define means for authentication, authorization, or privacy.

1.3.  Obsoleting RFC 3230

[RFC3230] defined the Digest and Want-Digest HTTP fields for HTTP integrity. It also coined the
terms "instance" and "instance manipulation" in order to explain concepts, such as selected representation data
(Section 8.1 of [HTTP]), that are now more universally defined and implemented as HTTP semantics.

Experience has shown that implementations of [RFC3230] have interpreted the meaning of "instance"
inconsistently, leading to interoperability issues. The most common issue relates to the mistake of calculating
the digest using (what we now call) message content, rather than using (what we now call) representation data
as was originally intended. Interestingly, time has also shown that a digest of message content can be beneficial
for some use cases, so it is difficult to detect if non-conformance to [RFC3230] is intentional or unintentional.

In order to address potential inconsistencies and ambiguity across implementations of Digest and Want-
Digest, this document obsoletes [RFC3230]. The Integrity fields (Sections 2 and 3) and Integrity preference
fields (Section 4) defined in this document are better aligned with current HTTP semantics and have names that
more clearly articulate the intended usages.

1.4.  Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here.

This document uses the Augmented BNF defined in [RFC5234] and updated by [RFC7405]. This includes the
rules CR (carriage return), LF (line feed), and CRLF (CR LF).

This document uses the following terminology from Section 3 of [STRUCTURED-FIELDS] to specify syntax
and parsing: Boolean, Byte Sequence, Dictionary, Integer, and List.

The definitions "representation", "selected representation", "representation data", "representation metadata",
"user agent", and "content" in this document are to be interpreted as described in [HTTP].

This document uses the line folding strategies described in [FOLDING].

Hashing algorithm names respect the casing used in their definition document (e.g., SHA-1, CRC32c).

HTTP messages indicate hashing algorithms using an Algorithm Key (algorithms). Where the document refers
to an Algorithm Key in prose, it is quoted (e.g., "sha", "crc32c").

The term "checksum" describes the output of applying an algorithm to a sequence of bytes, whereas "digest" is
only used in relation to the value contained in the fields.

"Integrity fields" is the collective term for Content-Digest and Repr-Digest.
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"Integrity preference fields" is the collective term for Want-Repr-Digest and Want-Content-Digest.
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2.  The Content-Digest Field

The Content-Digest HTTP field can be used in requests and responses to communicate digests that are
calculated using a hashing algorithm applied to the actual message content (see Section 6.4 of [HTTP]). It is a
Dictionary (see Section 3.2 of [STRUCTURED-FIELDS]), where each:

• key conveys the hashing algorithm (see Section 5) used to compute the digest;

• value is a Byte Sequence (Section 3.3.5 of [STRUCTURED-FIELDS]) that conveys an encoded version of
the byte output produced by the digest calculation.

For example:

NOTE: '\' line wrapping per RFC 8792

Content-Digest: \
  sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
  yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

The Dictionary type can be used, for example, to attach multiple digests calculated using different hashing
algorithms in order to support a population of endpoints with different or evolving capabilities. Such an
approach could support transitions away from weaker algorithms (see Section 6.6).

NOTE: '\' line wrapping per RFC 8792

Content-Digest: \
  sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
  sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
  yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

A recipient MAY ignore any or all digests. Application-specific behavior or local policy MAY set additional
constraints on the processing and validation practices of the conveyed digests. The security considerations
cover some of the issues related to ignoring digests (see Section 6.6) and validating multiple digests (see
Section 6.7).

A sender MAY send a digest without knowing whether the recipient supports a given hashing algorithm. A
sender MAY send a digest if it knows the recipient will ignore it.

Content-Digest can be sent in a trailer section. In this case, Content-Digest MAY be merged into the
header section; see Section 6.5.1 of [HTTP].
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3.  The Repr-Digest Field

The Repr-Digest HTTP field can be used in requests and responses to communicate digests that are
calculated using a hashing algorithm applied to the entire selected representation data (see Section 8.1 of
[HTTP]).

Representations take into account the effect of the HTTP semantics on messages. For example, the content can
be affected by range requests or methods, such as HEAD, while the way the content is transferred "on the wire"
is dependent on other transformations (e.g., transfer codings for HTTP/1.1; see Section 6.1 of [HTTP/1.1]). To
help illustrate HTTP representation concepts, several examples are provided in Appendix A.

When a message has no representation data, it is still possible to assert that no representation data was sent by
computing the digest on an empty string (see Section 6.3).

Repr-Digest is a Dictionary (see Section 3.2 of [STRUCTURED-FIELDS]), where each:

• key conveys the hashing algorithm (see Section 5) used to compute the digest;

• value is a Byte Sequence that conveys an encoded version of the byte output produced by the digest
calculation.

For example:

NOTE: '\' line wrapping per RFC 8792

Repr-Digest: \
  sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
  yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

The Dictionary type can be used to attach multiple digests calculated using different hashing algorithms in
order to support a population of endpoints with different or evolving capabilities. Such an approach could
support transitions away from weaker algorithms (see Section 6.6).

NOTE: '\' line wrapping per RFC 8792

Repr-Digest: \
  sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
  sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
  yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

A recipient MAY ignore any or all digests. Application-specific behavior or local policy MAY set additional
constraints on the processing and validation practices of the conveyed digests. The security considerations
cover some of the issues related to ignoring digests (see Section 6.6) and validating multiple digests (see
Section 6.7).

A sender MAY send a digest without knowing whether the recipient supports a given hashing algorithm. A
sender MAY send a digest if it knows the recipient will ignore it.

Repr-Digest can be sent in a trailer section. In this case, Repr-Digest MAY be merged into the header
section; see Section 6.5.1 of [HTTP].

3.1.  Using Repr-Digest in State-Changing Requests

When the representation enclosed in a state-changing request does not describe the target resource, the
representation digest MUST be computed on the representation data. This is the only possible choice because
representation digest requires complete representation metadata (see Section 3).

In responses,
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• if the representation describes the status of the request, Repr-Digest MUST be computed on the
enclosed representation (see Appendix B.8);

• if there is a referenced resource, Repr-Digest MUST be computed on the selected representation of
the referenced resource even if that is different from the target resource. This might or might not result in
computing Repr-Digest on the enclosed representation.

The latter case is done according to the HTTP semantics of the given method, for example, using the
Content-Location header field (see Section 8.7 of [HTTP]). In contrast, the Location header field does
not affect Repr-Digest because it is not representation metadata.

For example, in PATCH requests, the representation digest will be computed on the patch document because
the representation metadata refers to the patch document and not the target resource (see Section 2 of
[PATCH]). In responses, instead, the representation digest will be computed on the selected representation of
the patched resource.

3.2.  Repr-Digest and Content-Location in Responses

When a state-changing method returns the Content-Location header field, the enclosed representation
refers to the resource identified by its value and Repr-Digest is computed accordingly. An example is given
in Appendix B.7.
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4.  Integrity Preference Fields

Senders can indicate their interest in Integrity fields and hashing algorithm preferences using the Want-
Content-Digest or Want-Repr-Digest HTTP fields. These can be used in both requests and
responses.

Want-Content-Digest indicates that the sender would like to receive (via the Content-Digest field)
a content digest on messages associated with the request URI and representation metadata. Want-Repr-
Digest indicates that the sender would like to receive (via the Repr-Digest field) a representation digest
on messages associated with the request URI and representation metadata.

If Want-Content-Digest or Want-Repr-Digest are used in a response, it indicates that the server
would like the client to provide the respective Integrity field on future requests.

Integrity preference fields are only a hint. The receiver of the field can ignore it and send an Integrity field
using any algorithm or omit the field entirely; for example, see Appendix C.2. It is not a protocol error if
preferences are ignored. Applications that use Integrity fields and Integrity preferences can define expectations
or constraints that operate in addition to this specification. Ignored preferences are an application-specific
concern.

Want-Content-Digest and Want-Repr-Digest are of type Dictionary where each:

• key conveys the hashing algorithm (see Section 5);

• value is an Integer (Section 3.3.1 of [STRUCTURED-FIELDS]) that conveys an ascending, relative,
weighted preference. It must be in the range 0 to 10 inclusive. 1 is the least preferred, 10 is the most
preferred, and a value of 0 means "not acceptable".

Examples:

Want-Repr-Digest: sha-256=1
Want-Repr-Digest: sha-512=3, sha-256=10, unixsum=0
Want-Content-Digest: sha-256=1
Want-Content-Digest: sha-512=3, sha-256=10, unixsum=0
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5.  Hash Algorithm Considerations and Registration

There are a wide variety of hashing algorithms that can be used for the purposes of integrity. The choice of
algorithm depends on several factors such as the integrity use case, implementation needs or constraints, or
application design and workflows.

An initial set of algorithms will be registered with IANA in the "Hash Algorithms for HTTP Digest Fields"
registry; see Section 7.2. Additional algorithms can be registered in accordance with the policies set out in this
section.

Each algorithm has a status field that is intended to provide an aid to implementation selection.

Algorithms with a status value of "Active" are suitable for many purposes and it is RECOMMENDED that
applications use these algorithms. These can be used in adversarial situations where hash functions might
need to provide resistance to collision, first-preimage, and second-preimage attacks. For adversarial situations,
selection of the acceptable "Active" algorithms will depend on the level of protection the circumstances
demand. More considerations are presented in Section 6.6.

Algorithms with a status value of "Deprecated" either provide none of these properties or are known to be weak
(see [NO-MD5] and [NO-SHA]). These algorithms MAY be used to preserve integrity against corruption, but
MUST NOT be used in a potentially adversarial setting, for example, when signing Integrity fields' values for
authenticity. Permitting the use of these algorithms can help some applications (such as those that previously
used [RFC3230], are migrating to this specification (Appendix E), and have existing stored collections of
computed digest values) avoid undue operational overhead caused by recomputation using other more-secure
algorithms. Such applications are not exempt from the requirements in this section. Furthermore, applications
without such legacy or history ought to follow the guidance for using algorithms with the status value "Active".

Discussion of algorithm agility is presented in Section 6.6.

Registration requests for the "Hash Algorithms for HTTP Digest Fields" registry use the Specification Required
policy (Section 4.6 of [RFC8126]). Requests should use the following template:

Algorithm Key: The Structured Fields key value used in Content-Digest, Repr-Digest,
Want-Content-Digest, or Want-Repr-Digest field Dictionary member
keys.

Status: The status of the algorithm. The options are:

"Active": Algorithms without known problems

"Provisional": Unproven algorithms

"Deprecated": Deprecated or insecure algorithms

Description: A short description of the algorithm.

Reference(s): Pointer(s) to the primary document(s) defining the Algorithm Key and technical
details of the algorithm.

When reviewing registration requests, the designated expert(s) should pay attention to the requested status. The
status value should reflect standardization status and the broad opinion of relevant interest groups such as the
IETF or security-related Standards Development Organizations (SDOs). The "Active" status is not suitable for
an algorithm that is known to be weak, broken, or experimental. If a registration request attempts to register
such an algorithm as "Active", the designated expert(s) should suggest an alternative status of "Deprecated" or
"Provisional".

When reviewing registration requests, the designated expert(s) cannot use a status of "Deprecated" or
"Provisional" as grounds for rejection.

Requests to update or change the fields in an existing registration are permitted. For example, this could allow
for the transition of an algorithm status from "Active" to "Deprecated" as the security environment evolves.
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6.  Security Considerations

6.1.  HTTP Messages Are Not Protected in Full

This document specifies a data integrity mechanism that protects HTTP representation data or content, but not
HTTP header and trailer fields, from certain kinds of corruption.

Integrity fields are not intended to be a general protection against malicious tampering with HTTP messages.
In the absence of additional security mechanisms, an on-path malicious actor can either remove a digest value
entirely or substitute it with a new digest value computed over manipulated representation data or content.
This attack can be mitigated by combining mechanisms described in this document with other approaches
such as Transport Layer Security (TLS) or digital signatures (for example, HTTP Message Signatures
[SIGNATURES]).

6.2.  End-to-End Integrity

Integrity fields can help detect representation data or content modification due to implementation errors,
undesired "transforming proxies" (see Section 7.7 of [HTTP]), or other actions as the data passes across
multiple hops or system boundaries. Even a simple mechanism for end-to-end representation data integrity is
valuable because a user agent can validate that resource retrieval succeeded before handing off to an HTML
parser, video player, etc., for parsing.

Note that using these mechanisms alone does not provide end-to-end integrity of HTTP messages over multiple
hops since metadata could be manipulated at any stage. Methods to protect metadata are discussed in Section
6.3.

6.3.  Usage in Signatures

Digital signatures are widely used together with checksums to provide the certain identification of the origin
of a message [FIPS186-5]. Such signatures can protect one or more HTTP fields and there are additional
considerations when Integrity fields are included in this set.

There are no restrictions placed on the type or format of digital signature that Integrity fields can be used with.
One possible approach is to combine them with HTTP Message Signatures [SIGNATURES].

Digests explicitly depend on the "representation metadata" (e.g., the values of Content-Type, Content-
Encoding, etc.). A signature that protects Integrity fields but not other "representation metadata" can expose
the communication to tampering. For example, an actor could manipulate the Content-Type field-value and
cause a digest validation failure at the recipient, preventing the application from accessing the representation.
Such an attack consumes the resources of both endpoints. See also Section 3.2.

Signatures are likely to be deemed an adversarial setting when applying Integrity fields; see Section 5. Repr-
Digest offers an interesting possibility when combined with signatures. In the scenario where there is no
content to send, the digest of an empty string can be included in the message and, if signed, can help the
recipient detect if content was added either as a result of accident or purposeful manipulation. The opposite
scenario is also supported; including an Integrity field for content and signing it can help a recipient detect
where the content was removed.

Any mangling of Integrity fields might affect signature validation. Examples of such mangling include de-
duplicating digests or combining different field values (see Section 5.2 of [HTTP]).

6.4.  Usage in Trailer Fields

Before sending Integrity fields in a trailer section, the sender should consider that intermediaries are explicitly
allowed to drop any trailer (see Section 6.5.2 of [HTTP]).

Polli & Pardue Expires August 2024 [Page 12]

https://www.rfc-editor.org/rfc/rfc9110.html#section-7.7
https://www.rfc-editor.org/rfc/rfc9110.html#section-5.2
https://www.rfc-editor.org/rfc/rfc9110.html#section-6.5.2


RFC 9530 Digest Fields February 2024

When Integrity fields are used in a trailer section, the field-values are received after the content. Eager
processing of content before the trailer section prevents digest validation, possibly leading to processing of
invalid data.

One of the benefits of using Integrity fields in a trailer section is that it allows hashing of bytes as they are sent.
However, it is possible to design a hashing algorithm that requires processing of content in such a way that
would negate these benefits. For example, Merkle Integrity Content Encoding [MICE] requires content to be
processed in reverse order. This means the complete data needs to be available, which means there is negligible
processing difference in sending an Integrity field in a header versus a trailer section.

6.5.  Variations within Content-Encoding

Content coding mechanisms can support different encoding parameters, meaning that the same input content
can produce different outputs. For example, GZIP supports multiple compression levels. Such encoding
parameters are generally not communicated as representation metadata. For instance, different compression
levels would all use the same "Content-Encoding: gzip" field. Other examples include where encoding relies on
nonces or timestamps, such as the aes128gcm content coding defined in [RFC8188].

Since it is possible for there to be variation within content coding, the checksum conveyed by the Integrity
fields cannot be used to provide a proof of integrity "at rest" unless the whole content is persisted.

6.6.  Algorithm Agility

The security properties of hashing algorithms are not fixed. Algorithm agility (see [RFC7696]) is achieved by
providing implementations with flexibility to choose hashing algorithms from the IANA Hash Algorithms for
HTTP Digest Fields registry; see Section 7.2.

Transition from weak algorithms is supported by negotiation of hashing algorithm using Want-Content-
Digest or Want-Repr-Digest (see Section 4) or by sending multiple digests from which the receiver
chooses. A receiver that depends on a digest for security will be vulnerable to attacks on the weakest algorithm
it is willing to accept. Endpoints are advised that sending multiple values consumes resources that may be
wasted if the receiver ignores them (see Section 3).

While algorithm agility allows the migration to stronger algorithms, it does not prevent the use of weaker
algorithms. Integrity fields do not provide any mitigations for downgrade or substitution attacks (see Section
1 of [RFC6211]) of the hashing algorithm. To protect against such attacks, endpoints could restrict their set of
supported algorithms to stronger ones and protect the fields' values by using TLS and/or digital signatures.

6.7.  Resource Exhaustion

Integrity field validation consumes computational resources. In order to avoid resource exhaustion,
implementations can restrict validation of the algorithm types, the number of validations, or the size of content.
In these cases, skipping validation entirely or ignoring validation failure of a more-preferred algorithm leaves
the possibility of a downgrade attack (see Section 6.6).
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7.  IANA Considerations

7.1.  HTTP Field Name Registration

IANA has updated the "Hypertext Transfer Protocol (HTTP) Field Name Registry" [HTTP] as shown in the
table below:

Field Name Status Reference
Content-Digest permanent Section 2 of RFC 9530
Repr-Digest permanent Section 3 of RFC 9530
Want-Content-Digest permanent Section 4 of RFC 9530
Want-Repr-Digest permanent Section 4 of RFC 9530
Digest obsoleted [RFC3230], Section 1.3 of RFC

9530
Want-Digest obsoleted [RFC3230], Section 1.3 of RFC

9530

Table 1: Hypertext Transfer Protocol (HTTP) Field Name Registry Update

7.2.  Creation of the Hash Algorithms for HTTP Digest Fields Registry

IANA has created the new "Hash Algorithms for HTTP Digest Fields" registry at <https://www.iana.org/assign
ments/http-digest-hash-alg/> and populated it with the entries in Table 2. The procedure for new registrations is
provided in Section 5.

Algorithm Key Status Description Reference
sha-512 Active The SHA-512

algorithm.
[RFC6234],
[RFC4648], RFC 9530

sha-256 Active The SHA-256
algorithm.

[RFC6234],
[RFC4648], RFC 9530

md5 Deprecated The MD5 algorithm.
It is vulnerable to
collision attacks;
see [NO-MD5] and
[CMU-836068]

[RFC1321],
[RFC4648], RFC 9530

sha Deprecated The SHA-1 algorithm.
It is vulnerable to
collision attacks;
see [NO-SHA] and
[IACR-2020-014]

[RFC3174],
[RFC4648],
[RFC6234], RFC 9530

unixsum Deprecated The algorithm used
by the UNIX "sum"
command.

[RFC4648],
[RFC6234], [UNIX],

unixcksum Deprecated The algorithm used
by the UNIX "cksum"
command.

[RFC4648],
[RFC6234], [UNIX],

adler Deprecated The ADLER32
algorithm.

[RFC1950], RFC 9530

crc32c Deprecated The CRC32c
algorithm.

Appendix A of
[RFC9260], RFC 9530

Table 2: Initial Hash Algorithms
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7.3.  Deprecate the Hypertext Transfer Protocol (HTTP) Digest Algorithm Values Registry

IANA has deprecated the "Hypertext Transfer Protocol (HTTP) Digest Algorithm Values" registry at <https://w
ww.iana.org/assignments/http-dig-alg/> and replaced the note on that registry with the following text:

This registry is deprecated since it lists the algorithms that can be used with the Digest and Want-
Digest fields defined in [RFC3230], which has been obsoleted by RFC 9530. While registration is not
closed, new registrations are encouraged to use the Hash Algorithms for HTTP Digest                                   
                 Fields1 registry instead.

1 https://www.iana.org/assignments/http-digest-hash-alg/
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Appendix A.  Resource Representation and Representation Data

The following examples show how representation metadata, content transformations, and methods impact the
message and content. These examples a not exhaustive.

Unless otherwise indicated, the examples are based on the JSON object {"hello": "world"} followed by
an LF. When the content contains non-printable characters (e.g., when it is encoded), it is shown as a sequence
of hex-encoded bytes.

Consider a client that wishes to upload a JSON object using the PUT method. It could do this using the
application/json Content-Type without any content coding.

PUT /entries/1234 HTTP/1.1
Host: foo.example
Content-Type: application/json
Content-Length: 19

{"hello": "world"}

Figure 1: Request Containing a JSON Object without Any Content Coding

However, the use of content coding is quite common. The client could also upload the same data with a GZIP
coding (Section 8.4.1.3 of [HTTP]). Note that in this case, the Content-Length contains a larger value due
to the coding overheads.

PUT /entries/1234 HTTP/1.1
Host: foo.example
Content-Type: application/json
Content-Encoding: gzip
Content-Length: 39

1F 8B 08 00 88 41 37 64 00 FF
AB 56 CA 48 CD C9 C9 57 B2 52
50 2A CF 2F CA 49 51 AA E5 02
00 D9 E4 31 E7 13 00 00 00

Figure 2: Request Containing a GZIP-Encoded JSON Object

Sending the GZIP-coded data without indicating it via Content-Encoding means that the content is
malformed. In this case, the server can reply with an error.

PUT /entries/1234 HTTP/1.1
Host: foo.example
Content-Type: application/json

Content-Length: 39

1F 8B 08 00 88 41 37 64 00 FF
AB 56 CA 48 CD C9 C9 57 B2 52
50 2A CF 2F CA 49 51 AA E5 02
00 D9 E4 31 E7 13 00 00 00

Figure 3: Request Containing Malformed JSON
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HTTP/1.1 400 Bad Request

Figure 4: An Error Response for Malformed Content

A Range-Request affects the transferred message content. In this example, the client is accessing the resource
at /entries/1234, which is the JSON object {"hello": "world"} followed by an LF. However, the
client has indicated a preferred content coding and a specific byte range.

GET /entries/1234 HTTP/1.1
Host: foo.example
Accept-Encoding: gzip
Range: bytes=1-7

Figure 5: Request for Partial Content

The server satisfies the client request by responding with a partial representation (equivalent to the first 10
bytes of the JSON object displayed in whole in Figure 2).

HTTP/1.1 206 Partial Content
Content-Encoding: gzip
Content-Type: application/json
Content-Range: bytes 0-9/39

1F 8B 08 00 A5 B4 BD 62 02 FF

Figure 6: Partial Response from a GZIP-Encoded Representation

Aside from content coding or range requests, the method can also affect the transferred message content. For
example, the response to a HEAD request does not carry content, but this example case includes Content-
Length; see Section 8.6 of [HTTP].

HEAD /entries/1234 HTTP/1.1
Host: foo.example
Accept: application/json
Accept-Encoding: gzip

Figure 7: HEAD Request

HTTP/1.1 200 OK
Content-Type: application/json
Content-Encoding: gzip
Content-Length: 39

Figure 8: Response to HEAD Request (Empty Content)

Finally, the semantics of a response might decouple the target URI from the enclosed representation. In
the example below, the client issues a POST request directed to /authors/, but the response includes a
Content-Location header field indicating that the enclosed representation refers to the resource available
at /authors/123. Note that Content-Length is not sent in this example.
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POST /authors/ HTTP/1.1
Host: foo.example
Accept: application/json
Content-Type: application/json

{"author": "Camilleri"}

Figure 9: POST Request

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: /authors/123
Location: /authors/123

{"id": "123", "author": "Camilleri"}

Figure 10: Response with Content-Location Header
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Appendix B.  Examples of Unsolicited Digest

The following examples demonstrate interactions where a server responds with a Content-Digest or
Repr-Digest field, even though the client did not solicit one using Want-Content-Digest or Want-
Repr-Digest.

Some examples include JSON objects in the content. For presentation purposes, objects that fit completely
within the line-length limits are presented on a single line using compact notation with no leading space.
Objects that would exceed line-length limits are presented across multiple lines (one line per key-value pair)
with two spaces of leading indentation.

Checksum mechanisms defined in this document are media-type agnostic and do not provide canonicalization
algorithms for specific formats. Examples are calculated inclusive of any space. While examples can include
both fields, Content-Digest and Repr-Digest can be returned independently.

B.1.  Server Returns Full Representation Data

In this example, the message content conveys complete representation data. This means that in the response,
Content-Digest and Repr-Digest are both computed over the JSON object {"hello": "world"}
followed by an LF; thus, they have the same value.

GET /items/123 HTTP/1.1
Host: foo.example

Figure 11: GET Request for an Item

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 19
Content-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

{"hello": "world"}

Figure 12: Response with Identical Repr-Digest and Content-Digest

B.2.  Server Returns No Representation Data

In this example, a HEAD request is used to retrieve the checksum of a resource.

The response Content-Digest field-value is computed on empty content. Repr-Digest is calculated
over the JSON object {"hello": "world"} followed by an LF, which is not shown because there is no
content.

HEAD /items/123 HTTP/1.1
Host: foo.example

Figure 13: HEAD Request for an Item
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NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Content-Digest: \
  sha-256=:47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=:
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

Figure 14: Response with Both Content-Digest and Digest (Empty Content)

B.3.  Server Returns Partial Representation Data

In this example, the client makes a range request and the server responds with partial content.

GET /items/123 HTTP/1.1
Host: foo.example
Range: bytes=10-18

Figure 15: Request for Partial Content

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 206 Partial Content
Content-Type: application/json
Content-Range: bytes 10-18/19
Content-Digest: \
  sha-256=:jjcgBDWNAtbYUXI37CVG3gRuGOAjaaDRGpIUFsdyepQ=:
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

"world"}

Figure 16: Partial Response with Both Content-Digest and Repr-Digest

In the response message above, note that the Repr-Digest and Content-Digests are different. The
Repr-Digest field-value is calculated across the entire JSON object {"hello": "world"} followed by
an LF, and the field appears as follows:

NOTE: '\' line wrapping per RFC 8792

Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

However, since the message content is constrained to bytes 10-18, the Content-Digest field-value is
calculated over the sequence "world"} followed by an LF, thus resulting in the following:

NOTE: '\' line wrapping per RFC 8792

Content-Digest: \
  sha-256=:jjcgBDWNAtbYUXI37CVG3gRuGOAjaaDRGpIUFsdyepQ=:
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B.4.  Client and Server Provide Full Representation Data

The request contains a Repr-Digest field-value calculated on the enclosed representation. It also includes
an Accept-Encoding: br header field that advertises that the client supports Brotli encoding.

The response includes a Content-Encoding: br that indicates the selected representation is Brotli-
encoded. The Repr-Digest field-value is therefore different compared to the request.

For presentation purposes, the response body is displayed as a sequence of hex-encoded bytes because it
contains non-printable characters.

NOTE: '\' line wrapping per RFC 8792

PUT /items/123 HTTP/1.1
Host: foo.example
Content-Type: application/json
Accept-Encoding: br
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

{"hello": "world"}

Figure 17: PUT Request with Digest

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: /items/123
Content-Encoding: br
Content-Length: 23
Repr-Digest: \
  sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:

8B 08 80 7B 22 68 65 6C 6C 6F
22 3A 20 22 77 6F 72 6C 64 22
7D 0A 03

Figure 18: Response with Digest of Encoded Response

B.5.  Client Provides Full Representation Data and Server Provides No Representation
Data

The request Repr-Digest field-value is calculated on the enclosed content, which is the JSON object
{"hello": "world"} followed by an LF.

The response Repr-Digest field-value depends on the representation metadata header fields, including
Content-Encoding: br, even when the response does not contain content.
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NOTE: '\' line wrapping per RFC 8792

PUT /items/123 HTTP/1.1
Host: foo.example
Content-Type: application/json
Content-Length: 19
Accept-Encoding: br
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

{"hello": "world"}

HTTP/1.1 204 No Content
Content-Type: application/json
Content-Encoding: br
Repr-Digest: sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:

Figure 19: Empty Response with Digest

B.6.  Client and Server Provide Full Representation Data

The response contains two digest values using different algorithms.

For presentation purposes, the response body is displayed as a sequence of hex-encoded bytes because it
contains non-printable characters.

NOTE: '\' line wrapping per RFC 8792

PUT /items/123 HTTP/1.1
Host: foo.example
Content-Type: application/json
Accept-Encoding: br
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

{"hello": "world"}

Figure 20: PUT Request with Digest
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NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Content-Encoding: br
Content-Location: /items/123
Repr-Digest: \
  sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
  sha-512=:db7fdBbgZMgX1Wb2MjA8zZj+rSNgfmDCEEXM8qLWfpfoNY0sCpHAzZbj\
  09X1/7HAb7Od5Qfto4QpuBsFbUO3dQ==:

8B 08 80 7B 22 68 65 6C 6C 6F
22 3A 20 22 77 6F 72 6C 64 22
7D 0A 03

Figure 21: Response with Digest of Encoded Content

B.7.  POST Response Does Not Reference the Request URI

The request Repr-Digest field-value is computed on the enclosed representation (see Section 3.1), which is
the JSON object {"title": "New Title"} followed by an LF.

The representation enclosed in the response is a multiline JSON object followed by an LF. It refers to the
resource identified by Content-Location (see Section 6.4.2 of [HTTP]); thus, an application can use
Repr-Digest in association with the resource referenced by Content-Location.

POST /books HTTP/1.1
Host: foo.example
Content-Type: application/json
Accept: application/json
Accept-Encoding: identity
Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

{"title": "New Title"}

Figure 22: POST Request with Digest

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: /books/123
Location: /books/123
Repr-Digest: sha-256=:uVSlinTTdQUwm2On4k8TJUikGN1bf/Ds8WPX4oe0h9I=:

{
  "id": "123",
  "title": "New Title"
}

Figure 23: Response with Digest of Resource

B.8.  POST Response Describes the Request Status

The request Repr-Digest field-value is computed on the enclosed representation (see Section 3.1), which is
the JSON object {"title": "New Title"} followed by an LF.

Polli & Pardue Expires August 2024 [Page 26]

https://www.rfc-editor.org/rfc/rfc9110.html#section-6.4.2


RFC 9530 Digest Fields February 2024

The representation enclosed in the response describes the status of the request, so Repr-Digest is computed
on that enclosed representation. It is a multiline JSON object followed by an LF.

Response Repr-Digest has no explicit relation with the resource referenced by Location.

POST /books HTTP/1.1
Host: foo.example
Content-Type: application/json
Accept: application/json
Accept-Encoding: identity
Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

{"title": "New Title"}

Figure 24: POST Request with Digest

HTTP/1.1 201 Created
Content-Type: application/json
Repr-Digest: sha-256=:yXIGDTN5VrfoyisKlXgRKUHHMs35SNtyC3szSz1dbO8=:
Location: /books/123

{
  "status": "created",
  "id": "123",
  "ts": 1569327729,
  "instance": "/books/123"
}

Figure 25: Response with Digest of Representation

B.9.  Digest with PATCH

This case is analogous to a POST request where the target resource reflects the target URI.

The PATCH request uses the application/merge-patch+json media type defined in [RFC7396].
Repr-Digest is calculated on the content that corresponds to the patch document and is the JSON object
{"title": "New Title"} followed by an LF.

The response Repr-Digest field-value is computed on the complete representation of the patched resource.
It is a multiline JSON object followed by an LF.

PATCH /books/123 HTTP/1.1
Host: foo.example
Content-Type: application/merge-patch+json
Accept: application/json
Accept-Encoding: identity
Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

{"title": "New Title"}

Figure 26: PATCH Request with Digest
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HTTP/1.1 200 OK
Content-Type: application/json
Repr-Digest: sha-256=:uVSlinTTdQUwm2On4k8TJUikGN1bf/Ds8WPX4oe0h9I=:

{
  "id": "123",
  "title": "New Title"
}

Figure 27: Response with Digest of Representation

Note that a 204 No Content response without content, but with the same Repr-Digest field-value,
would have been legitimate too. In that case, Content-Digest would have been computed on an empty
content.

B.10.  Error Responses

In error responses, the representation data does not necessarily refer to the target resource. Instead, it refers to
the representation of the error.

In the following example, a client sends the same request from Figure 26 to patch the resource located at /
books/123. However, the resource does not exist and the server generates a 404 response with a body that
describes the error in accordance with [RFC9457].

The response Repr-Digest field-value is computed on this enclosed representation. It is a multiline JSON
object followed by an LF.

HTTP/1.1 404 Not Found
Content-Type: application/problem+json
Repr-Digest: sha-256=:EXB0S2VF2H7ijkAVJkH1Sm0pBho0iDZcvVUHHXTTZSA=:

{
  "title": "Not Found",
  "detail": "Cannot PATCH a non-existent resource",
  "status": 404
}

Figure 28: Response with Digest of Error Representation

B.11.  Use with Trailer Fields and Transfer Coding

An origin server sends Repr-Digest as trailer field, so it can calculate digest-value while streaming content
and thus mitigate resource consumption. The Repr-Digest field-value is the same as in Appendix B.1
because Repr-Digest is designed to be independent of the use of one or more transfer codings (see Section
3).

In the response content below, the string "\r\n" represents the CRLF bytes.

GET /items/123 HTTP/1.1
Host: foo.example

Figure 29: GET Request
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NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
Trailer: Repr-Digest

8\r\n
{"hello"\r\n
8\r\n
: "world\r\n
3\r\n
"}\n\r\n
0\r\n
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:\r\n

Figure 30: Chunked Response with Digest
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Appendix C.  Examples of Want-Repr-Digest Solicited Digest

The following examples demonstrate interactions where a client solicits a Repr-Digest using Want-
Repr-Digest. The behavior of Content-Digest and Want-Content-Digest is identical.

Some examples include JSON objects in the content. For presentation purposes, objects that fit completely
within the line-length limits are presented on a single line using compact notation with no leading space.
Objects that would exceed line-length limits are presented across multiple lines (one line per key-value pair)
with two spaces of leading indentation.

Checksum mechanisms described in this document are media-type agnostic and do not provide canonicalization
algorithms for specific formats. Examples are calculated inclusive of any space.

C.1.  Server Selects Client's Least Preferred Algorithm

The client requests a digest and prefers "sha". The server is free to reply with "sha-256" anyway.

GET /items/123 HTTP/1.1
Host: foo.example
Want-Repr-Digest: sha-256=3, sha=10

Figure 31: GET Request with Want-Repr-Digest

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Repr-Digest: \
  sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

{"hello": "world"}

Figure 32: Response with Different Algorithm

C.2.  Server Selects Algorithm Unsupported by Client

The client requests a "sha" digest because that is the only algorithm it supports. The server is not obliged to
produce a response containing a "sha" digest; it instead uses a different algorithm.

GET /items/123 HTTP/1.1
Host: foo.example
Want-Repr-Digest: sha=10

Figure 33: GET Request with Want-Repr-Digest
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NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Repr-Digest: \
  sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
  yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

{"hello": "world"}

Figure 34: Response with Unsupported Algorithm

C.3.  Server Does Not Support Client Algorithm and Returns an Error

Appendix C.2 is an example where a server ignores the client's preferred digest algorithm. Alternatively, a
server can also reject the request and return a response with an error status code such as 4xx or 5xx. This
specification does not prescribe any requirement on status code selection; the following example illustrates one
possible option.

In this example, the client requests a "sha" Repr-Digest, and the server returns an error with problem
details [RFC9457] contained in the content. The problem details contain a list of the hashing algorithms that
the server supports. This is purely an example; this specification does not define any format or requirements for
such content.

GET /items/123 HTTP/1.1
Host: foo.example
Want-Repr-Digest: sha=10

Figure 35: GET Request with Want-Repr-Digest

HTTP/1.1 400 Bad Request
Content-Type: application/problem+json

{
  "title": "Bad Request",
  "detail": "Supported hashing algorithms: sha-256, sha-512",
  "status": 400
}

Figure 36: Response Advertising the Supported Algorithms
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Appendix D.  Sample Digest Values

This section shows examples of digest values for different hashing algorithms. The input value is the JSON
object {"hello": "world"}. The digest values are each produced by running the relevant hashing
algorithm over the input and running the output bytes through Byte Sequence serialization; see Section 4.1.8 of
[STRUCTURED-FIELDS].

NOTE: '\' line wrapping per RFC 8792

sha-512 -   :WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm+\
            AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:

sha-256 -   :X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=:

md5 -       :Sd/dVLAcvNLSq16eXua5uQ==:

sha -       :07CavjDP4u3/TungoUHJO/Wzr4c=:

unixsum -   :GQU=:

unixcksum - :7zsHAA==:

adler -     :OZkGFw==:

crc32c -    :Q3lHIA==:
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Appendix E.  Migrating from RFC 3230

HTTP digests are computed by applying a hashing algorithm to input data. [RFC3230] defined the input data
as an "instance", a term it also defined. The concept of an instance has since been superseded by the HTTP
semantic term "representation". It is understood that some implementations of [RFC3230] mistook "instance"
to mean HTTP content. Using content for the Digest field is an error that leads to interoperability problems
between peers that implement [RFC3230].

[RFC3230] was only ever intended to use what HTTP now defines as selected representation data. The
semantic concept of digest and representation are explained alongside the definition of the Repr-Digest
field (Section 3).

While the syntax of Digest and Repr-Digest are different, the considerations and examples this document
gives for Repr-Digest apply equally to Digest because they operate on the same input data; see Sections
3.1, 6 and 6.3.

[RFC3230] could never communicate the digest of HTTP message content in the Digest field; Content-
Digest now provides that capability.

[RFC3230] allowed algorithms to define their output encoding format for use with the Digest field. This
resulted in a mix of formats such as base64, hex, or decimal. By virtue of using Structured Fields, Content-
Digest, and Repr-Digest use only a single encoding format. Further explanation and examples are
provided in Appendix D.
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