Network Working Group T. Berners-Lee

Request for Comments. 2396 MIT/LCS
Updates. 1808, 1738 R. Fielding
Category: Standards Track U.C. Irvine
L. Masinter

Xerox Corporation

August 1998

Uniform Resource I dentifiers (URI): Generic Syntax

Status of thisMemo

This document specifies an Internet standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the current edition of the “Internet Official
Protocol Standards’ (STD 1) for the standardization state and status of this protocol. Distribution of this memo
is unlimited.

|ESG Note

This paper describes a"superset" of operations that can be applied to URI. It consists of both a grammar
and a description of basic functionality for URI. To understand what is avalid URI, both the grammar and
the associated description have to be studied. Some of the functionality described is not applicable to al
URI schemes, and some operations are only possible when certain mediatypes are retrieved using the URI,
regardless of the scheme used.

Copyright Notice
Copyright © The Internet Society (1998). All Rights Reserved.

Abstract

A Uniform Resource Identifier (URI) is acompact string of characters for identifying an abstract or physical
resource. This document defines the generic syntax of URI, including both absolute and relative forms, and
guidelines for their use; it revises and replaces the generic definitionsin RFC 1738 and RFC 1808.

This document defines a grammar that is a superset of al valid URI, such that an implementation can parse the
common components of a URI reference without knowing the scheme-specific requirements of every possible
identifier type. This document does not define a generative grammar for URI; that task will be performed by
theindividual specifications of each URI scheme.

#RFC1808
#RFC1738

RFC 2396 URI Generic Syntax August 1998

Table of Contents

I oo 11 ot o o 1O OSSOSO 4
L1 OVENVIEOW OF URI ..ottt sttt st e e se e e e s et eneesessesaeeaesbesbeseenbeteneeneeneeneeneenens 4
1.2 URI, URL, @8N0 URN.....oiiiiietiietiieeseste ettt ssessssessesessesessesessesessesessasessassssessssensnsensesessesessesessesessenes 4
R B g 01 o] L= U TP PSPPSR 5
1.4 Hierarchical URI @and REGHVE FOMS........oiiiiieirieesiee sttt st e st ste st esbe e sbenessenens 5
LT U T I 01w] o 7= o1 7P 6
1.6 Syntax Notation and COMMON EIEMENTS.........ccciiiiiirirereee ettt s b e st st sae b e seenea 6
2 URI Characters and ESCApe SEOUENCES........cureuirieierieiirieiesieierteesseessesessessesessese s s e e sse e ssese s e sse s esessesessesessens 8
2.1 URI @nd NON-ASCI ChEr8CLEN'S.........eiuiitiierieeeieie ettt sttt et e e et s s et sbesbesbesbesbesbeseenbe b s 8
2.2 RESEIVEI CharBCLEIS.....ciueueitiieieseete sttt sttt ettt sttt st beseebese et e se et e seeb e st eseseeseebene et e e ebeneebeseebeneebeseebeseebenensens 8
2.3 UNIESEIVEO CharaClerS......c.civiuiiieiriiirtiiete ettt sttt ettt ettt e bt b e s e e b et e s e b e n e b e st b e ne s s an e et e e ebeaebenteneneens 9
24 ESCOPE SEOUENCES. ... c.eeeeueeueeseeueesessesseaseasessesseasessesee s esse s e e eseeseeseeh e eE e eb e o R e e R e AR 1E e s 4R e e e e eneeseeae e R e ebenbeebeerenbeseeanerennen 9
P R = oo = I = oo o [o OSSOSO 9
242 When to ESCANE @N0 UNESCADE........ciueuirieiirieesiee sttt sttt st st st sttt b ettt b e st b e et nn b e 9
24.3 EXCIUAED US-ASCIH CharallerS.....ciiieieiesiisiesieseeieseeseeseesessesessessessessessesseseessessessesssssesssssessessssessessessessessens 10
3 URI SYNtaCtiC COMPONENTS......c.cueitiuiriierieieieieiese ettt sttt b e bbbt b et b et b et b e e e b e e e b e s ebe b st b s b 11
3.1 SCHEME COMPONEN........eiteiteitirtite et ettt ettt sheebesbe b e s besbese e e e ee e e e eaeeae e Rt eheebe e bt ebeebesbesee e enbene e s emeeneeneenenneeaeens 11
ICTZZ ANV 1270 LY OC0) 1070 0] 1= o PR 12
321 Registry-based Naming AULNOMILY......ccciiiiiie e e e e re e resae s reere st es 12
3.22 Server-based Naming AULNOTTY........ccouiiriieiirese sttt sre st e e te e e e esae e eneenennis 12
TG T = | T 0] 1707 1= o | S 13
34 QUENY COMIPONENT. ... e ueitirirereessetesseeeseeue ettt sre bt sreer e b e se e s e s e se e e ea s e s e e aeeseeh e e Re e b e eR e e Rt sR e e R e R e se e e e s e e e e eneesenneenenrenne e 13
O | B L = = o T 14
N R e = 'o [401= 0 L o = g () = USSR 14
4.2 SaME-OCUMENE REFEIENCES.cuiieeirieierieiisteisiees sttt sttt esbe e bbb be s be st et st et e be e nbe e nsenens 14
G T TS o = WU LI = = oo S 14
5 REGLIVE URI REFEIBNCES......oiviieieieeceee ettt st s ee e e e seese s ssessestesaesaestesteseesensense e eneeneeneeneesensees 16
51 EStablishing @ BaSe URI.......cc.oiiiiiiiiiieeee ettt bbbttt 16
511 Base URI Within DOCUMENE CONLENE........cceiuiitirieieirieieiereeeeeseeeetesie e sreseeseeseesseseeseeseeneeneeeenessesnessessessesns 17
5.1.2 Base URI from the ENCapSUlating BNtycoeoooeieiee e 17
5.1.3 Base URI from the REtieval URI ...t 17
LN B T 0 ==t S U OSSO 17
5.2 Resolving Relative References to ADSOIULE FOIM.........ccoiiiiiiiei et e 18
6 URI Normalization and EQUIVAIENCE..........cc.cueieeieiiece e s st e et sa e ae e e st esaestesbestestestesaesaensesaeeeneenesneanens 20
7 SECUTITY CONSIAEN ALIONS.....c.iiteieiteisteeete ettt sttt ettt bbbt b e st b s e b e e b e s e e bt s e e bt s b st s b e st s bt s be e st e es 21
8 ACKNOWIBUGEIMENTS. ...ttt sttt e et h e e aeeaeebesbe s et sb e beseese et e b e neeneeseeaeeaeebeebesaesbeebeseeseens 22
LS L = 1= ot P TS 23

Berners-Lee, et al. Standards Track [Page 2]

RFC 2396 URI Generic Syntax August 1998

AULNOTS AGANESSES......cvieiitieetie ettt b b st et et Rt E e b e b e e bRt R bR et R et b e e e R e e b e e b en s 24

Appendix A Collected BNF fOF URI....ccoiiiiiieeeciese et sre e sre st stesneneanaennnns 25
Appendix B Parsing a URI Reference with a Regular EXPreSSiON......c.oeiiieeneeneeneese e 27
Appendix C Examples of Resolving Relative URI REFEreNCES........cccviiiririiiniereee e e 28
L3 A N g = I o) = 28
C.2 ADNOIMA EXAIMPIES... .ottt sttt ettt se ettt bbb b e s b e e bbbt e e bt b e st b et e et et eb e e b nes 28
Appendix D Embedding the Base URI in HTML dOCUMENTS.........ccoiiiiiiniiniieeeeie et 30
Appendix E Recommendations for Delimiting URI in CONTEXL.........cooieiiieiriiieiinene e 31
PN o] o= aTo D S AN o] o] =Y = = o B 32
Appendix G Summary of Non-editorial ChanQES..........coeiiiiiiie e 33
L0 R N (o110 LTS OO P TSP S PSPPSR 33
G.2 Maodifications from both RFC 1738 and RFC 1808..........cccoiriiirieiirerieieeneses et es 33
G.3 Modifications from REC L1738..........ccoiiiireirireiese ettt neeren e e renenis 34
G4 Modifications from RFC L1808.........cccoverierierieieieeeeeeeseseseesteseeseesseseeseessessessessessssessessessessessessessessessessessessensen 34
T 1= TSRS 35

Intellectual Property and Copyright SEAEEMENTS.........ooiiiiiiiriee ettt s eneas 37

Berners-Lee, et al. Standards Track [Page 3]

RFC 2396 URI Generic Syntax August 1998

1. Introduction

Uniform Resource Identifiers (URI) provide a simple and extensible means for identifying aresource. This
specification of URI syntax and semantics is derived from concepts introduced by the World Wide Web global
information initiative, whose use of such objects dates from 1990 and is described in "Universal Resource
Identifiersin WWW" [RFC1630]. The specification of URI is designed to meet the recommendations laid out
in "Functional Recommendations for Internet Resource Locators' [RFC1736] and "Functional Requirements
for Uniform Resource Names' [RFC1737].

This document updates and merges "Uniform Resource Locators' [RFC1738] and "Relative Uniform Resource
Locators' [RFC1808] in order to define asingle, generic syntax for all URI. It excludes those portions of RFC
1738 that defined the specific syntax of individual URL schemes; those portions will be updated as separate
documents, as will the process for registration of new URI schemes. This document does not discuss the

issues and recommendation for dealing with characters outside of the US-ASCII character set [ASCII]; those
recommendations are discussed in a separate document.

All significant changes from the prior RFCs are noted in Appendix G.

1.1. Overview of URI

URI are characterized by the following definitions:

Uniform

Uniformity provides several benefits: it allows different types of resource identifiers to be used in the
same context, even when the mechanisms used to access those resources may differ; it allows uniform
semantic interpretation of common syntactic conventions across different types of resource identifiers;

it allows introduction of new types of resource identifiers without interfering with the way that existing
identifiers are used; and, it allows the identifiers to be reused in many different contexts, thus permitting
new applications or protocols to leverage a pre-existing, large, and widely-used set of resource identifiers.

Resource

A resource can be anything that has identity. Familiar examples include an electronic document, an image,
aservice (e.g., "today's weather report for Los Angeles'), and a collection of other resources. Not all
resources are network "retrievable"; e.g., human beings, corporations, and bound booksin alibrary can
also be considered resources.

The resource is the conceptual mapping to an entity or set of entities, not necessarily the entity which
corresponds to that mapping at any particular instance in time. Thus, a resource can remain constant even
when its content---the entities to which it currently corresponds---changes over time, provided that the
conceptual mapping is not changed in the process.

Identifier
Anidentifier is an object that can act as areference to something that has identity. In the case of URI, the
object is a sequence of characters with arestricted syntax.

Having identified aresource, a system may perform avariety of operations on the resource, as might be
characterized by such words as “access, “update', “replace’, or “find attributes.

1.2. URI, URL, and URN

A URI can be further classified as alocator, a name, or both. The term "Uniform Resource Locator" (URL)
refersto the subset of URI that identify resources via a representation of their primary access mechanism (e.g.,
their network "location™), rather than identifying the resource by name or by some other attribute(s) of that
resource. The term "Uniform Resource Name" (URN) refers to the subset of URI that are required to remain
globally unique and persistent even when the resource ceases to exist or becomes unavailable.

The URI scheme (Section 3.1) defines the namespace of the URI, and thus may further restrict the syntax and
semantics of identifiers using that scheme. This specification defines those elements of the URI syntax that

Berners-Lee, et al. Standards Track [Page 4]

RFC 2396 URI Generic Syntax August 1998

are either required of all URI schemes or are common to many URI schemes. It thus defines the syntax and
semantics that are needed to implement a scheme-independent parsing mechanism for URI references, such that
the scheme-dependent handling of a URI can be postponed until the scheme-dependent semantics are needed.
We use the term URL below when describing syntax or semantics that only apply to locators.

Although many URL schemes are named after protocols, this does not imply that the only way to access the
URL 'sresource is viathe named protocol. Gateways, proxies, caches, and name resol ution services might be
used to access some resources, independent of the protocol of their origin, and the resolution of some URL
may require the use of more than one protocol (e.g., both DNS and HTTP are typically used to access an "http"
URL's resource when it can't be found in alocal cache).

A URN differsfrom a URL in that it's primary purpose is persistent labeling of aresource with an identifier.
That identifier is drawn from one of a set of defined namespaces, each of which has its own set name
structure and assignment procedures. The "urn” scheme has been reserved to establish the requirements for a
standardized URN namespace, as defined in "URN Syntax" [RFC2141] and its related specifications.

Most of the examples in this specification demonstrate URL, since they allow the most varied use of the syntax
and often have a hierarchical namespace. A parser of the URI syntax is capable of parsing both URL and URN
references as a generic URI; once the scheme is determined, the scheme-specific parsing can be performed on
the generic URI components. In other words, the URI syntax is a superset of the syntax of all URI schemes.

1.3. Example URI

The following examplesillustrate URI that are in common use.
ftp://ftp.is.co.zalrfc/rfcl808.txt

-- ftp scheme for File Transfer Protocol services

gopher://spinal tap. m cro. um. edu/ 00/ Weat her/ Cal i f or ni a/ Los%20Angel es
-- gopher scheme for Gopher and Gopher+ Protocol services
http://ww. mat h. ui 0. no/ f ag/ conpr essi on-faq/ part 1. ht m
-- http scheme for Hypertext Transfer Protocol services

mai | t o: nduerst @fi . uni zh. ch

-- mailto scheme for electronic mail addresses

news: conp. i nf osyst enms. Www. servers. uni x

-- news scheme for USENET news groups and articles

tel net://mel vyl . ucop. edu/

-- telnet scheme for interactive services viathe TELNET Protocol

1.4. Hierarchical URI and Relative Forms

An absolute identifier refersto a resource independent of the context in which the identifier is used. In contrast,
arelative identifier refersto aresource by describing the difference within a hierarchical namespace between
the current context and an absolute identifier of the resource.

Some URI schemes support a hierarchical naming system, where the hierarchy of the nameis denoted by a"/"
delimiter separating the components in the scheme. This document defines a scheme-independent “relative
form of URI reference that can be used in conjunction with a “base’ URI (of a hierarchical scheme) to produce
another URI. The syntax of hierarchical URI is described in Section 3; the relative URI calculation is described
in Section 5.

Berners-Lee, et al. Standards Track [Page 5]

RFC 2396 URI Generic Syntax August 1998

1.5. URI Transcribability

The URI syntax was designed with global transcribability as one of its main concerns. A URI is a sequence

of characters from avery limited set, i.e. the |etters of the basic Latin alphabet, digits, and afew special
characters. A URI may be represented in avariety of ways: e.g., ink on paper, pixels on a screen, or a sequence
of octetsin a coded character set. The interpretation of a URI depends only on the characters used and not how
those characters are represented in a network protocol.

The goal of transcribability can be described by a simple scenario. Imagine two colleagues, Sam and Kim,
sitting in apub at an international conference and exchanging research ideas. Sam asks Kim for alocation to
get more information, so Kim writes the URI for the research site on a napkin. Upon returning home, Sam takes
out the napkin and types the URI into a computer, which then retrieves the information to which Kim referred.

There are several design concerns revealed by the scenario:
* A URI isasequence of characters, which is not always represented as a sequence of octets.

* A URI may be transcribed from a non-network source, and thus should consist of characters that are most
likely to be able to be typed into a computer, within the constraints imposed by keyboards (and related
input devices) across languages and locales.

« A URI often needs to be remembered by people, and it is easier for people to remember a URI when it
consists of meaningful components.

These design concerns are not alwaysin alignment. For example, it is often the case that the most meaningful
name for a URI component would require characters that cannot be typed into some systems. The ability to
transcribe the resource identifier from one medium to another was considered more important than having
its URI consist of the most meaningful of components. In local and regional contexts and with improving
technology, users might benefit from being able to use awider range of characters; such use is not defined in
this document.

1.6. Syntax Notation and Common Elements

This document uses two conventions to describe and define the syntax for URI. Thefirst, called the layout
form, is a general description of the order of components and component separators, asin

<first>/ <second>; <t hi r d>?<f ourt h>

The component names are enclosed in angle-brackets and any characters outside angle-brackets are literal
separators. Whitespace should be ignored. These descriptions are used informally and do not define the syntax
reguirements.

The second convention is a BNF-like grammar, used to define the formal URI syntax. The grammar is that of
[RFC822], except that "|" is used to designate alternatives. Briefly, rules are separated from definitions by an
equal "=", indentation is used to continue arule definition over more than one line, literals are quoted with ",
parentheses " (" and ")" are used to group elements, optional elements are enclosed in "[" and "]" brackets, and
elements may be preceded with <n>* to designate n or more repetitions of the following element; n defaultsto
0.

Unlike many specifications that use a BNF-like grammar to define the bytes (octets) allowed by a protocol,
the URI grammar is defined in terms of characters. Each literal in the grammar corresponds to the character it
represents, rather than to the octet encoding of that character in any particular coded character set. How a URI
is represented in terms of bits and bytes on the wire is dependent upon the character encoding of the protocol
used to transport it, or the charset of the document which containsit.

Berners-Lee, et al. Standards Track [Page 6]

RFC 2396 URI Generic Syntax August 1998

The following definitions are common to many elements:

al pha = | owal pha | upal pha

| owal pha = "a" | "b" | "c" | "d" | "e" | "“f" | "g" | "h" | "i" |
S L L A O I B B B B A
e B T e R B S B A e

upal pha ="A" | "B" | "C" | "D' | "E'" | "“F" | "G | "H | "I" |
I UKO LM N O P] Q| R
ST otTT] OCuUT] OtV O"W X Y] 2t

digit ="o" | "1" | "2"] "3" | "4" | "5" | "6" | "7" |
II8II | II9II

al phanum = al pha | digit

The complete URI syntax is collected in Appendix A.

Berners-Lee, et al. Standards Track [Page 7]

RFC 2396 URI Generic Syntax August 1998

2. URI Charactersand Escape Sequences

URI consist of arestricted set of characters, primarily chosen to aid transcribability and usability both in
computer systems and in non-computer communications. Characters used conventionally as delimiters around
URI were excluded. The restricted set of characters consists of digits, letters, and a few graphic symbols were
chosen from those common to most of the character encodings and input facilities available to Internet users.

uric = reserved | unreserved | escaped

Within a URI, characters are either used as delimiters, or to represent strings of data (octets) within the
delimited portions. Octets are either represented directly by a character (using the US- ASCII character for that
octet [ASCII]) or by an escape encoding. This representation is elaborated below.

2.1. URI and non-ASCI| characters

The relationship between URI and characters has been a source of confusion for charactersthat are not part of
US-ASCII. To describe the relationship, it is useful to distinguish between a"character" (as a distinguishable
semantic entity) and an "octet" (an 8-bit byte). There are two mappings, one from URI charactersto octets, and
a second from octets to original characters:

URI character sequence->octet sequence->original character sequence

A URI isrepresented as a sequence of characters, not as a sequence of octets. That is because URI might be
"transported” by means that are not through a computer network, e.g., printed on paper, read over the radio, etc.

A URI scheme may define a mapping from URI characters to octets; whether thisis done depends on the
scheme. Commonly, within adelimited component of a URI, a sequence of characters may be used to represent
a sequence of octets. For example, the character "a" represents the octet 97 (decimal), while the character
sequence %", "0", "a" represents the octet 10 (decimal).

There is asecond trandation for some resources: the sequence of octets defined by a component of the URI

is subsequently used to represent a sequence of characters. A 'charset' defines this mapping. There are many
charsetsin use in Internet protocols. For example, UTF-8 [UTF-8] defines a mapping from sequences of octets
to sequences of charactersin the repertoire of 1SO 10646.

In the smplest case, the original character sequence contains only charactersthat are defined in US-ASCII, and
the two levels of mapping are simple and easily invertible: each 'original character' is represented as the octet
for the US-ASCII codefor it, which is, in turn, represented as either the US-ASCII character, or else the "%"
escape sequence for that octet.

For original character sequences that contain non-ASCII characters, however, the situation is more difficult.
Internet protocols that transmit octet sequences intended to represent character sequences are expected to
provide some way of identifying the charset used, if there might be more than one [RFC2277]. However, there
is currently no provision within the generic URI syntax to accomplish thisidentification. An individual URI
scheme may require a single charset, define adefault charset, or provide away to indicate the charset used.

It is expected that a systematic treatment of character encoding within URI will be developed as afuture
maodification of this specification.

2.2. Reserved Characters

Many URI include components consisting of or delimited by, certain special characters. These characters are
called "reserved", since their usage within the URI component is limited to their reserved purpose. If the data
for a URI component would conflict with the reserved purpose, then the conflicting data must be escaped
before forming the URI.

reserved S Y R - L I R B B S I I
”$" | "1"

Berners-Lee, et al. Standards Track [Page §]

RFC 2396 URI Generic Syntax August 1998

The "reserved" syntax class above refers to those characters that are allowed within a URI, but which may
not be allowed within a particular component of the generic URI syntax; they are used as delimiters of the
components described in Section 3.

Charactersin the "reserved” set are not reserved in al contexts. The set of characters actually reserved within
any given URI component is defined by that component. In general, a character is reserved if the semantics of
the URI changesif the character is replaced with its escaped US-ASCII encoding.

2.3. Unreserved Characters

Data characters that are allowed in a URI but do not have areserved purpose are called unreserved. These
include upper and lower case |etters, decimal digits, and alimited set of punctuation marks and symbols.

unr eserved al phanum | mark

mar k SR B B B N B A e I G I
Unreserved characters can be escaped without changing the semantics of the URI, but this should not be done
unless the URI is being used in a context that does not allow the unescaped character to appear.

2.4. Escape Sequences

Data must be escaped if it does not have a representation using an unreserved character; this includes data that
does not correspond to a printable character of the US-ASCII coded character set, or that corresponds to any
US-ASCII character that is disallowed, as explained below.

2.4.1. Escaped Encoding

An escaped octet is encoded as a character triplet, consisting of the percent character "%" followed by the two
hexadecimal digits representing the octet code. For example, "%20" is the escaped encoding for the US-ASCI|

space character.

escaped = "% hex hex

hex =digit | "A" | "B" | "C | "D | "E'"| "F'|
"a" | "b" | "c" | "d" | "e" | "f"

2.4.2. When to Escape and Unescape

A URI isawaysin an "escaped" form, since escaping or unescaping a completed URI might change its
semantics. Normally, the only time escape encodings can safely be made is when the URI is being created
from its component parts; each component may have its own set of characters that are reserved, so only the
mechanism responsible for generating or interpreting that component can determine whether or not escaping a
character will change its semantics. Likewise, a URI must be separated into its components before the escaped
characters within those components can be safely decoded.

In some cases, data that could be represented by an unreserved character may appear escaped; for example,
some of the unreserved "mark" characters are automatically escaped by some systems. If the given URI scheme
defines a canonicalization algorithm, then unreserved characters may be unescaped according to that algorithm.
For example, "%7€" is sometimes used instead of "~" in an http URL path, but the two are equivalent for an
http URL.

Because the percent "%" character always has the reserved purpose of being the escape indicator, it must

be escaped as "%25" in order to be used as data within a URI. Implementers should be careful not to escape
or unescape the same string more than once, since unescaping an already unescaped string might lead to
misinterpreting a percent data character as another escaped character, or vice versain the case of escaping an
already escaped string.

Berners-Lee, et al. Standards Track [Page 9]

RFC 2396 URI Generic Syntax August 1998

2.4.3. Excluded US-ASCI| Characters

Although they are disallowed within the URI syntax, we include here a description of those US-ASCI|
characters that have been excluded and the reasons for their exclusion.

The control charactersin the US-ASCII coded character set are not used within a URI, both because they are
non-printable and because they are likely to be misinterpreted by some control mechanisms.

control = <US-ASCI | coded characters 00-1F and 7F hexadeci nal >

The space character is excluded because significant spaces may disappear and insignificant spaces may be
introduced when URI are transcribed or typeset or subjected to the treatment of word- processing programs.
Whitespace is also used to delimit URI in many contexts.

space = <US-ASClI | coded character 20 hexadeci mal >

The angle-bracket "<" and ">" and double-quote (") characters are excluded because they are often used asthe
delimiters around URI in text documents and protocol fields. The character "#" is excluded because it is used to
delimit aURI from afragment identifier in URI references (Section 4). The percent character "%" is excluded
because it is used for the encoding of escaped characters.

del i s = """ | " | "yt | " og | <>

Other characters are excluded because gateways and other transport agents are known to sometimes modify
such characters, or they are used as delimiters.

unwi se S S S S I T S (A A R N e

Data corresponding to excluded characters must be escaped in order to be properly represented within a URI.

Berners-Lee, et al. Standards Track [Page 10]

RFC 2396 URI Generic Syntax August 1998

3. URI Syntactic Components
The URI syntax is dependent upon the scheme. In general, absolute URI are written as follows:
<schene>: <schene-speci fic-part>
An absolute URI contains the name of the scheme being used (<scheme>) followed by a colon (":") and then a
string (the <scheme-specific- part>) whose interpretation depends on the scheme.

The URI syntax does not require that the scheme-specific-part have any general structure or set of semantics
which is common among all URI. However, a subset of URI do share a common syntax for representing
hierarchical relationships within the namespace. This "generic URI" syntax consists of a sequence of four main
components:

<schene>: // <aut hori t y><pat h>?<quer y>

each of which, except <scheme>, may be absent from a particular URI. For example, some URI schemes do not
allow an <authority> component, and others do not use a <query> component.

absol ut eURI = schene ":" (hier_part | opaque_part)

URI that are hierarchical in nature use the slash "/" character for separating hierarchical components. For
somefile systems, a"/" character (used to denote the hierarchical structure of a URI) isthe delimiter used to
construct afile name hierarchy, and thus the URI path will look similar to afile pathname. This does NOT
imply that the resourceis afile or that the URI maps to an actua filesystem pathname.

hi er _part = (net_path | abs_path) ["?" query]
net _path ="//" authority [abs_path]
abs_path ="/" path_segnments

URI that do not make use of the slash "'/* character for separating hierarchical components are considered
opaque by the generic URI parser.

uric_no_slash *uric

opaque_part

uric_no_sl ash unreserved | escaped | ";" | "?" | ":" | "@ |

eI e

We use the term <path> to refer to both the <abs _path> and <opaque_part> constructs, since they are mutually
exclusive for any given URI and can be parsed as a single component.

3.1. Scheme Component

Just as there are many different methods of access to resources, there are a variety of schemes for identifying
such resources. The URI syntax consists of a sequence of components separated by reserved characters, with
the first component defining the semantics for the remainder of the URI string.

Scheme names consist of a sequence of characters beginning with alower case letter and followed by any
combination of lower case letters, digits, plus ("+"), period ("."), or hyphen ("-"). For resiliency, programs
interpreting URI should treat upper case |etters as equivalent to lower case in scheme names (e.g., allow
"HTTP" aswell as"http").

schene = alpha *(alpha | digit | "“+" | "-" | ".")

Berners-Lee, et al. Standards Track [Page 11]

RFC 2396 URI Generic Syntax August 1998

Relative URI references are distinguished from absolute URI in that they do not begin with a scheme name.
Instead, the scheme isinherited from the base URI, as described in Section 5.2.

3.2. Authority Component

Many URI schemes include atop hierarchical element for a naming authority, such that the namespace defined
by the remainder of the URI is governed by that authority. This authority component istypically defined by an
Internet-based server or a scheme-specific registry of naming authorities.

aut hority = server | reg_nane

The authority component is preceded by a double slash "//" and is terminated by the next slash "/", question-
mark "?*, or by the end of the URI. Within the authority component, the characters";", ":", "@", "?', and "/"
arereserved.

An authority component is not required for a URI scheme to make use of relative references. A base
URI without an authority component implies that any relative reference will also be without an authority
component.

3.2.1. Registry-based Naming Authority

The structure of aregistry-based naming authority is specific to the URI scheme, but constrained to the allowed
characters for an authority component.

reg_nane = 1*(unreserved | escaped | "$" | "," |
S r@ | e | =)

3.2.2. Server-based Naming Authority

URL schemes that involve the direct use of an |P-based protocol to a specified server on the Internet use a
common syntax for the server component of the URI's scheme-specific data:

<user i nf o>@host >: <port >

where <userinfo> may consist of a user name and, optionally, scheme- specific information about how to gain
authorization to access the server. The parts "<userinfo>@" and ":<port>" may be omitted.

server = [[userinfo "@] hostport]
The user information, if present, is followed by a commercial at-sign"@".

userinfo = *(unreserved | escaped |
SR IR I A I I

Some URL schemes use the format "user:password" in the userinfo field. This practiceis NOT
RECOMMENDED, because the passing of authentication information in clear text (such as URI) has proven to
be a security risk in almost every case where it has been used.

The host is adomain name of a network host, or its |Pv4 address as a set of four decimal digit groups separated
by ".". Literal IPv6 addresses are not supported.

Berners-Lee, et al. Standards Track [Page 12]

RFC 2396 URI Generic Syntax August 1998

host port = host [":" port]

host = hostnane | | Pv4address

host nane = *(domainlabel ".") toplabel ["."]

donmai nl abel = al phanum | al phanum *(al phanum | "-") al phanum
t opl abel = al pha | al pha *(al phanum| "-") al phanum

| Pv4addr ess = 1*digit "." 1*digit "." 1*digit "." 1l*digit

port = *digit

Hostnames take the form described in Section 3 of [RFC1034] and Section 2.1 of [RFC1123]: a sequence of
domain labels separated by ".", each domain label starting and ending with an al phanumeric character and
possibly also containing "-" characters. The rightmost domain label of afully qualified domain name will never
start with a digit, thus syntactically distinguishing domain names from |Pv4 addresses, and may be followed

by asingle"." if it is necessary to distinguish between the complete domain name and any local domain. To
actually be "Uniform" as aresource locator, a URL hostname should be a fully qualified domain name. In

practice, however, the host component may be alocal domain literal.

Note: A suitable representation for including aliteral 1Pv6 address as the host part of a URL is desired, but
has not yet been determined or implemented in practice.

The port is the network port number for the server. Most schemes designate protocols that have a default port
number. Another port number may optionally be supplied, in decimal, separated from the host by a colon. If the
port is omitted, the default port number is assumed.

3.3. Path Component

The path component contains data, specific to the authority (or the scheme if there is no authority component),
identifying the resource within the scope of that scheme and authority.

pat h = [abs_path | opaque_part]
pat h_segnments = segnent *("/" segnment)
segnment = *pchar *(";" param)

par am = *pchar

pchar = unreserved | escaped |

| @ | "& | "=t ot otet

The path may consist of a sequence of path segments separated by a single slash "/* character. Within a path
segment, the characters"/", *;", "=", and "?" are reserved. Each path segment may include a sequence of
parameters, indicated by the semicolon ;" character. The parameters are not significant to the parsing of
relative references.

3.4. Query Component
The query component is a string of information to be interpreted by the resource.
query = *uric

Within a query component, the characters™;", /", "?", ™", "@", "&", "=", "+",",", and "$" are reserved.

Berners-Lee, et al. Standards Track [Page 13]

RFC 2396 URI Generic Syntax August 1998

4. URI References

The term "URI-reference” is used here to denote the common usage of aresource identifier. A URI reference
may be absolute or relative, and may have additional information attached in the form of afragment identifier.
However, "the URI" that results from such a reference includes only the absolute URI after the fragment
identifier (if any) isremoved and after any relative URI isresolved to its absolute form. Although it is possible
to limit the discussion of URI syntax and semantics to that of the absolute result, most usage of URI iswithin
general URI references, and it isimpossible to obtain the URI from such a reference without also parsing the
fragment and resolving the relative form.

URI -reference = [absoluteURl | relativeURl | ["#" fragnent]

The syntax for relative URI is a shortened form of that for absolute URI, where some prefix of the URI is
missing and certain path components ("." and "..") have a special meaning when, and only when, interpreting a
relative path. The relative URI syntax is defined in Section 5.

4.1. Fragment Identifier

When a URI reference is used to perform aretrieval action on the identified resource, the optional fragment
identifier, separated from the URI by a crosshatch ("#") character, consists of additional reference information
to be interpreted by the user agent after the retrieval action has been successfully completed. As such, it is not
part of a URI, but is often used in conjunction with a URI.

f ragment = *uric

The semantics of afragment identifier is aproperty of the data resulting from aretrieval action, regardless

of the type of URI used in the reference. Therefore, the format and interpretation of fragment identifiers

is dependent on the media type [RFC2046] of theretrieval result. The character restrictions described in
Section 2 for URI aso apply to the fragment in a URI-reference. Individual media types may define additional
restrictions or structure within the fragment for specifying different types of "partial views' that can be
identified within that media type.

A fragment identifier is only meaningful when a URI referenceis intended for retrieval and the result of that
retrieval isadocument for which the identified fragment is consistently defined.

4.2. Same-document References

A URI reference that does not contain a URI is a reference to the current document. In other words, an empty
URI reference within adocument isinterpreted as a reference to the start of that document, and a reference
containing only afragment identifier is areference to the identified fragment of that document. Traversal of
such a reference should not result in an additional retrieval action. However, if the URI reference occursin a
context that is always intended to result in a new request, as in the case of HTML's FORM element, then an
empty URI reference represents the base URI of the current document and should be replaced by that URI
when transformed into arequest.

4.3. Parsing a URI Reference

A URI referenceistypically parsed according to the four main components and fragment identifier in order
to determine what components are present and whether the reference is relative or absolute. The individual
components are then parsed for their subparts and, if not opaque, to verify their validity.

Although the BNF defines what is allowed in each component, it is ambiguous in terms of differentiating
between an authority component and a path component that begins with two slash characters. The greedy
algorithm is used for disambiguation: the left-most matching rule soaks up as much of the URI reference string
asit is capable of matching. In other words, the authority component wins.

Berners-Lee, et al. Standards Track [Page 14]

RFC 2396 URI Generic Syntax August 1998

Readers familiar with regular expressions should see Appendix B for a concrete parsing example and test
oracle.

Berners-Lee, et al. Standards Track [Page 15]

RFC 2396 URI Generic Syntax August 1998

5. Relative URI References

It is often the case that a group or "tree" of documents has been constructed to serve a common purpose; the
vast majority of URI in these documents point to resources within the tree rather than outside of it. Similarly,
documents located at a particular site are much more likely to refer to other resources at that site than to
resources at remote sites.

Relative addressing of URI allows document trees to be partially independent of their location and access
scheme. For instance, it is possible for asingle set of hypertext documents to be simultaneously accessible

and traversable via each of the "file", "http", and "ftp" schemesif the documents refer to each other using
relative URI. Furthermore, such document trees can be moved, as awhole, without changing any of therelative
references. Experience within the WWW has demonstrated that the ability to perform relative referencing is
necessary for the long-term usability of embedded URI.

The syntax for relative URI takes advantage of the <hier_part> syntax of <absoluteURI> (Section 3) in order to
express areference that is relative to the namespace of another hierarchical URI.

relativeUR = (net_path | abs path | rel _path) ["?" query]

A relative reference beginning with two slash charactersis termed a network-path reference, as defined by
<net_path> in Section 3. Such references are rarely used.

A relative reference beginning with asingle slash character is termed an absolute-path reference, as defined by
<abs path> in Section 3.

A relative reference that does not begin with a scheme name or a slash character is termed arelative-path
reference.

rel _path rel _segnent [abs _path]

rel _segnent 1*(unreserved | escaped |

STl T@ e | e e)

Within arelative-path reference, the complete path segments "." and ".." have special meanings: "the current
hierarchy level" and "the level above this hierarchy level”, respectively. Although thisis very similar to their
use within Unix-based filesystems to indicate directory levels, these path components are only considered
special when resolving arelative-path reference to its absolute form (Section 5.2).

Authors should be aware that a path segment which contains a colon character cannot be used as the first
segment of arelative URI path (e.g., "thisithat"), because it would be mistaken for a scheme name. It is
therefore necessary to precede such segments with other segments (e.g., "./this:that") in order for them to be
referenced as arelative path.

It is not necessary for all URI within a given scheme to be restricted to the <hier_part> syntax, since the
hierarchical properties of that syntax are only necessary when relative URI are used within a particular
document. Documents can only make use of relative URI when their base URI fits within the <hier_part>
syntax. It is assumed that any document which contains arelative reference will also have a base URI that
obeys the syntax. In other words, relative URI cannot be used within a document that has an unsuitable base
URI.

Some URI schemes do not allow a hierarchical syntax matching the <hier_part> syntax, and thus cannot use
relative references.

5.1. Establishing a Base URI

The term "relative URI" implies that there exists some absolute "base URI" against which the relative reference
is applied. Indeed, the base URI is necessary to define the semantics of any relative URI reference; without it, a
relative reference is meaningless. In order for relative URI to be usable within a document, the base URI of that
document must be known to the parser.

Berners-Lee, et al. Standards Track [Page 16]

RFC 2396 URI Generic Syntax August 1998

The base URI of adocument can be established in one of four ways, listed below in order of precedence. The
order of precedence can be thought of in terms of layers, where the innermost defined base URI has the highest
precedence. This can be visualized graphically as:

| <rel ative_reference> |

I
I
| Y e e e e e e e e e e e 1
| (5.1.1) Base URI enbedded in the

I

docunent's cont ent

(5.1.2) Base URI of the encapsulating entity
(message, docunent, or none).

(5.1.3) URI used to retrieve the entity

(5.1.4) Default Base URI is application-dependent

5.1.1. Base URI within Document Content

Within certain document media types, the base URI of the document can be embedded within the content itself
such that it can be readily obtained by a parser. This can be useful for descriptive documents, such as tables of
content, which may be transmitted to others through protocols other than their usual retrieval context (e.g., E-
Mail or USENET news).

It is beyond the scope of this document to specify how, for each mediatype, the base URI can be embedded. It
is assumed that user agents manipulating such media types will be able to obtain the appropriate syntax from
that media type's specification. An example of how the base URI can be embedded in the Hypertext Markup
Language (HTML) [RFC1866] is provided in Appendix D.

A mechanism for embedding the base URI within MIME container types (e.g., the message and multipart
types) is defined by MHTML [RFC2110]. Protocols that do not use the MIME message header syntax, but
which do alow some form of tagged metainformation to be included within messages, may define their own
syntax for defining the base URI as part of a message.

5.1.2. Base URI from the Encapsulating Entity

If no base URI is embedded, the base URI of a document is defined by the document's retrieval context. For a
document that is enclosed within another entity (such as a message or another document), the retrieval context
isthat entity; thus, the default base URI of the document is the base URI of the entity in which the document is
encapsul ated.

5.1.3. Base URI from the Retrieval URI

If no base URI is embedded and the document is not encapsulated within some other entity (e.g., the top level
of acomposite entity), then, if a URI was used to retrieve the base document, that URI shall be considered the
base URI. Note that if the retrieval was the result of aredirected request, the last URI used (i.e., that which
resulted in the actual retrieval of the document) is the base URI.

5.1.4. Default Base URI

If none of the conditions described in Sections 5.1.1--5.1.3 apply, then the base URI is defined by the context
of the application. Since this definition is necessarily application-dependent, failing to define the base URI

Berners-Lee, et al. Standards Track [Page 17]

RFC 2396 URI Generic Syntax August 1998

using one of the other methods may result in the same content being interpreted differently by different types of
application.

It isthe responsibility of the distributor(s) of adocument containing relative URI to ensure that the base URI
for that document can be established. It must be emphasized that relative URI cannot be used reliably in
situations where the document's base URI is not well-defined.

5.2. Resolving Relative Referencesto Absolute Form

This section describes an example algorithm for resolving URI references that might be relative to a given base
URI.

The base URI is established according to the rules of Section 5.1 and parsed into the four main components
as described in Section 3. Note that only the scheme component is required to be present in the base URI; the
other components may be empty or undefined. A component is undefined if its preceding separator does not
appear in the URI reference; the path component is never undefined, though it may be empty. The base URI's

query component is not used by the resolution agorithm and may be discarded.

For each URI reference, the following steps are performed in order:

1

The URI referenceis parsed into the potential four components and fragment identifier, as described in
Section 4.3.

If the path component is empty and the scheme, authority, and query components are undefined, then it is
areference to the current document and we are done. Otherwise, the reference URI's query and fragment
components are defined as found (or not found) within the URI reference and not inherited from the base
URI.

If the scheme component is defined, indicating that the reference starts with a scheme name, then the
reference isinterpreted as an absolute URI and we are done. Otherwise, the reference URI's schemeis
inherited from the base URI's scheme component. Due to aloophole in prior specifications [RFC1630],
some parsers allow the scheme name to be present in arelative URI if it isthe same as the base URI
scheme. Unfortunately, this can conflict with the correct parsing of non-hierarchical URI. For backwards
compatibility, an implementation may work around such references by removing the scheme if it matches
that of the base URI and the scheme is known to always use the <hier_part> syntax. The parser can then
continue with the steps below for the remainder of the reference components. Validating parsers should
mark such amisformed relative reference as an error.

If the authority component is defined, then the reference is a network-path and we skip to step 7. Otherwise,
the reference URI's authority isinherited from the base URI's authority component, which will also be
undefined if the URI scheme does not use an authority component.

If the path component begins with a slash character ("/"), then the reference is an absolute-path and we skip
tostep 7.

If this step is reached, then we are resolving a relative-path reference. The relative path needs to be merged
with the base URI's path. Although there are many ways to do this, we will describe a simple method using
a separate string buffer.

A. All but the last segment of the base URI's path component is copied to the buffer. In other words, any
characters after the last (right-most) slash character, if any, are excluded.

The reference's path component is appended to the buffer string.

All occurrences of "./", where"." is a complete path segment, are removed from the buffer string.

If the buffer string ends with "." as a complete path segment, that "." is removed.

All occurrences of "<segment>/../", where <segment> is a complete path segment not equal to "..", are
remove